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Abstract

We show that incorporating spatial dispersal of individuals into a sim-
ple vaccination epidemic model may give rise to a model that exhibits rich
dynamical behavior. Using an SIVS (susceptible – infected – vaccinated – sus-
ceptible) model as a basis, we describe the spread of an infectious disease in
a population split into two regions. In each sub-population, both forward and
backward bifurcations can occur. This implies that for disconnected regions,
the two-patch system may admit several steady states. We consider traveling
between the regions, and investigate the impact of spatial dispersal of indi-
viduals on the model dynamics. We establish conditions for the existence of
multiple non-trivial steady states in the system, and we study the structure of
the equilibria. The mathematical analysis reveals an unusually rich dynamical
behavior, not normally found in the simple epidemic models. In addition to
the disease free equilibrium, eight endemic equilibria emerge from backward
transcritical and saddle-node bifurcation points, forming an interesting bifur-
cation diagram. Stability of steady states, their bifurcations and the global
dynamics are investigated with analytical tools, numerical simulations, and
rigorous set-oriented numerical computations.
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1 Introduction
The basic reproduction number R is a central quantity in epidemiology, as it de-
termines the average number of secondary infections caused by a typical infected
individual introduced into a wholly susceptible population. In disease transmission
models, the reproduction number serves as a threshold for the stability of the disease
free equilibrium (DFE). The usual situation is that for R < 1, the stable DFE is
the only equilibrium, but it loses its stability as R increases through 1, where a
stable positive equilibrium emerges. Such a transition of stability between the DFE
and the endemic equilibrium is called forward bifurcation. However, it is possible to
have a very different situation at R = 1. In case the model undergoes a backward
bifurcation at R = 1, there is an interval for R to the left of 1 where multiple pos-
itive equilibria (typically one unstable and one stable) coexist with the DFE. The
direction of bifurcation is of particular interest from the perspective of controlling
the epidemic. If the system exhibits a forward bifurcation at R = 1 then for disease
eradication it is always sufficient to decrease R to 1. On the other hand, in case of
backward bifurcation, the presence of a stable endemic equilibrium for R < 1 makes
it necessary to bring the reproduction number well below 1 to successfully eliminate
the infection.

Backward bifurcation has been observed in several studies which consider epi-
demic models for multiple groups with asymmetry between groups and multiple
interaction mechanisms (see [12, 15, 16], and [14] for an overview). Some simple dis-
ease transmission models with vaccination of susceptible individuals are discussed
by Kribs-Zaleta et al. and Brauer in [4, 5, 19, 20]. A basic model can be described
by the following system of ordinary differential equations:

S ′(t) = Λ(N(t))− β(N(t))S(t)I(t)− (µ+ φ)S(t) + γI(t) + θV (t),

I ′(t) = β(N(t))S(t)I(t) + σβ(N(t))V (t)I(t)− (µ+ γ)I(t),

V ′(t) = φS(t)− σβ(N(t))V (t)I(t)− (µ+ θ)V (t),

(1)

where S(t), I(t), V (t) and N(t) denote the number of susceptible, infected, vacci-
nated individuals and the total population size, respectively, at time t. It is assumed
that all individuals are born susceptible, that is represented by the birth term Λ,
that is a function of the total population. The parameter µ is the natural death
rate in each class. Disease transmission is modeled by the term β(N)SI, where the
transmission rate β is a function of the total population, and the parameters φ and
γ stand for the vaccination rate of susceptible individuals and the recovery rate of
infected individuals, respectively. It is assumed that vaccination loses effect at rate θ,
and 0 ≤ σ ≤ 1 is introduced to model the phenomenon that vaccination may reduce
but not completely eliminate susceptibility to infection. With certain conditions on
the birth function Λ, the system (1) can be reduced to two equations by means of
the theory of asymptotically autonomous systems (for a reference, see [23, 36, 37]).
For this two dimensional system, a complete qualitative analysis was carried out in
[4], including a condition for the existence of backward bifurcation.

In this paper, we consider a two-patch vaccination model to investigate the im-
pact of individuals’ mobility on the disease dynamics. Our model generalizes the
above presented epidemic model (1), as we study the spread of the disease when
the population is distributed over two geographically discrete locations, which are
connected by instantaneous travel. The aim of this work is to describe steady states,
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their stability and their bifurcations in the two-patch model, and to reveal how in-
dividuals’ mobility influences the dynamical behavior. Our results demonstrate that
incorporating spatial dispersal of individuals into simple vaccination models can re-
sult in rich dynamics; in particular, we show that the stable DFE might coexist
with three stable and five unstable non-trivial steady states in the model. By ex-
ploring the bifurcation structure with analytic and numerical methods, we identify
two distinct bifurcation routes from nine to three equilibria.

In disease transmission models, investigating the long time behaviour of solutions
provides key knowledge for determining final epidemic outcome, and identifying
adequate intervention measures. However, describing the local and global stability
of equilibria, their attracting regions and bifurcations are rather complex tasks, when
the corresponding system is highly nonlinear and there is a large number of steady
states. A rich bifurcation structure implies that the disease dynamics is sensitive
to the model parameters and initial conditions. It also allows a variety of different
final epidemic outcomes, that makes disease control and mitigation plans rather
challenging to design. Our findings about the coexistence of multiple stable steady
states, having very different levels of infection in the patches, resembles the observed
phenomenon of the high variability of hepatitis-B prevalence in different cities, which
has been attributed to strongly nonlinear disease dynamics [24].

In addition to the “classical” analysis of equilibria, we conduct a series of set-
oriented computations for qualitative analysis of the dynamics using combinatorial
and topological methods, as introduced in [1]. Roughly speaking, these computations
are carried out for prescribed ranges of parameters, and allow to classify the global
dynamics encountered within a given bounded region of the phase space by means of
enclosing all the chain recurrent dynamics in isolating neighborhoods, and providing
information which connecting orbits between them are possible. The Conley index
is used to provide additional information about the recurrent sets found. In this
method, all the computations are carried out using interval arithmetic (see [26] for
a comprehensive introduction), and the results are mathematically rigorous. This
is different than in approximate numerical simulations, which are typically much
cheaper but may not provide mathematically reliable results. Since the method is
based upon using interval arithmetic and outer approximations, the results are valid
for entire ranges of parameters; in particular, proof of continuation of isolating neigh-
borhoods is obtained for the ranges of parameters for which the dynamics has been
classified as equivalent. Moreover, this method does not only detect attractors, but
also unstable invariant sets, usually difficult to find using classical numerical meth-
ods. Another advantage of this method is that it provides an automatic proof of the
fact that outside of the constructed isolating neighborhoods there is no other recur-
rent dynamics. In particular, this method provides the certainty that no bounded
trajectories in the given phase space have been missed, that there are no periodic
solutions except bounded in the regions found explicitly, and that there are no other
fixed points, no other kinds of chain recurrent sets.

The paper is organized as follows. In Section 2, we introduce a general disease
transmission model with vaccination for epidemic spread in two regions. We discuss
a restriction of the model to symmetric regions in Section 3, and we investigate
the equilibria of the model with analytic methods. In Section 4, we apply numerical
simulations to illustrate the rich bifurcation structure that is encountered in the sys-
tem. Finally, in Section 5 we describe rigorous set-oriented numerical computations
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conducted for the symmetric model at the parameter ranges for which we found the
bifurcations.

2 The general two-patch model
A general disease transmission model with vaccination for epidemic spread in two
regions can be described by the system

S ′1(t) = Λ1 − β1(N1(t))S1(t)I1(t)− (µ1 + φ1)S1(t) + γ1I1(t) + θ1V1(t)

− αS1S1(t) + αS2S2(t),

I ′1(t) = β1(N1(t))S1(t)I1(t) + σ1β1(N1(t))V1(t)I1(t)− (µ1 + γ1)I1(t)

− αI1I1(t) + αI2I2(t),

V ′1(t) = φ1S1(t)− σ1β1(N1(t))V1(t)I1(t)− (µ1 + θ1)V1(t)

− αV1 V1(t) + αV2 V2(t),

S ′2(t) = Λ2 − β2(N2(t))S2(t)I2(t)− (µ2 + φ2)S2(t) + γ2I2(t) + θ2V2(t)

− αS2S2(t) + αS1S1(t),

I ′2(t) = β2(N2(t))S2(t)I2(t) + σ2β2(N2(t))V2(t)I2(t)− (µ2 + γ2)I2(t)

− αI2I2(t) + αI1I1(t),

V ′2(t) = φ2S2(t)− σ2β2(N2(t))V2(t)I2(t)− (µ2 + θ2)V2(t)

− αV2 V2(t) + αV1 V1(t).

(2)

We denote the compartment of susceptible, infected and vaccinated individuals in
region j (j ∈ {1, 2}) by Sj, Ij and Vj, respectively, and the total population Nj in
region j is obtained as Nj(t) = Sj(t) + Ij(t) + Vj(t). The description of the model
parameters has been given in Section 1. The subscripts 1 and 2 indicate that the
two regions may have different characteristics. We assume that susceptible, infected
and vaccinated individuals in region j travel with rates αSj , αIj and αVj from region
j to region k, where j, k ∈ {1, 2} and j 6= k. We obtain some simple results for the
system (2). The proof of the first proposition is trivial and thus omitted.

Proposition 2.1. Nonnegative initial data give rise to nonnegative solutions in the
system (2).

Proposition 2.2. In the system (2), there exists a unique disease free equilibrium,
when the disease is not present in the populations.

Proof. In the disease free subspace, the system (2) reduces to

S ′1(t) = Λ1 − (µ1 + φ1)S1(t) + θ1V1(t)− αS1S1(t) + αS2S2(t),

V ′1(t) = φ1S1(t)− (µ1 + θ1)V1(t)− αV1 V1(t) + αV2 V2(t),

S ′2(t) = Λ2 − (µ2 + φ2)S2(t) + θ2V2(t)− αS2S2(t) + αS1S1(t),

V ′2(t) = φ2S2(t)− (µ2 + θ2)V2(t)− αV2 V2(t) + αV1 V1(t).

(3)
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We derive the unique positive equilibrium of this system as
S̄1

V̄1

S̄2

V̄2

 =


µ1 + φ1 + αS1 −θ1 −αS2 0
−φ1 µ1 + θ1 + αV1 0 −αV2
−αS1 0 µ2 + φ2 + αS2 −θ2

0 −αV1 −φ2 µ2 + θ2 + αV2


−1

Λ1

0
Λ2

0

 .

It is straightforward that (S̄1, 0, V̄1, S̄2, 0, V̄2) is a DFE of the system (2). Uniqueness
follows from the uniqueness of (S̄1, V̄1, S̄2, V̄2) in (3).

Proposition 2.3. Assume that αS1 = αI1 = αV1 and αS2 = αI2 = αV2 . Then the total
population sizes converge to an equilibrium.

Proof. For the total populations in region 1 and 2, we derive the following differential
equation system

N ′1(t) = Λ1 − (µ1 + α1)N1(t) + α2N2(t),

N ′2(t) = Λ2 − (µ2 + α2)N2(t) + α1N1(t),
(4)

where α1 and α2 denote the mobility rate of the population in region 1 and 2,
respectively. One can find that the positive equilibrium (K1, K2) for the populations
is given by (

K1

K2

)
=

(
µ1 + α1 −α2

−α1 µ2 + α2

)−1(
Λ1

Λ2

)
.

Set M1(t) := N1(t)−K1,M2(t) := N2(t)−K2. Then we obtain the linear system

M ′
1(t) = −(µ1 + α1)M1(t) + α2M2(t),

M ′
2(t) = −(µ2 + α2)M2(t) + α1M1(t).

Since α1 and α2 are nonnegative and µ1, µ2 > 0, the zero solution of the last sys-
tem is asymptotically stable. This implies the asymptotic stability of the positive
equilibrium (K1, K2).

In the sequel, we assume that all disease classes within a patch have the same
mobility rate, denoted by α1 and α2 in region 1 and 2, respectively. Then, using the
fact that S1(t) = N1(t)− I1(t)− V1(t) and S2(t) = N2(t)− I2(t)− V2(t), we rewrite
equations (2)2, (2)3, (2)5 and (2)6 in terms of Nj(t), Ij(t) and Vj(t) (j ∈ {1, 2}). This
four dimensional system can be considered as a system of nonautonomous differential
equations with nonautonomous terms N1(t) and N2(t), which are governed by the
system (4). Then, by Proposition 2.3, we deduce that the system (2) is asymptotically
autonomous with the limiting system

I ′1(t) = β1(K1)(K1 − I1(t)− (1− σ1)V1(t))I1(t)− (µ1 + γ1)I1(t)

− α1I1(t) + α2I2(t),

V ′1(t) = φ1(K1 − I1(t))− σ1β1(K1)V1(t)I1(t)− (µ1 + θ1 + φ1)V1(t)

− α1V1(t) + α2V2(t),

I ′2(t) = β2(K2)(K2 − I2(t)− (1− σ2)V2(t))I2(t)− (µ2 + γ2)I2(t)

− α2I2(t) + α1I1(t),

V ′2(t) = φ2(K2 − I2(t))− σ2β2(K2)V2(t)I2(t)− (µ2 + θ2 + φ2)V2(t)

− α2V2(t) + α1V1(t).

(5)
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As the transmission rates β1(K1) and β2(K2) are constants in the system (5), in the
sequel we simply write β1 and β2. In what follows, we focus on the mathematical
analysis of the system (5) in the feasible phase space (i.e. in the set of biologically
relevant states)

X = {(I1, V1, I2, V2) ∈ R4
+ | I1 + V1 ≤ K1, I2 + V2 ≤ K2}. (6)

As the positive equilibrium (K1, K2) is globally attracting for the populations in
the two regions, we can assume that the two populations have attained their steady
states, and thus are both constant.

The DFE of the system (5) can be obtained as (0, V̄1, 0, V̄2), where(
V̄1

V̄2

)
=

(
µ1 + θ1 + φ1 + α1 −α2

−α1 µ2 + θ2 + φ2 + α2

)−1(
φ1K1

φ2K2

)
.

The concept of the next generation matrix (NGM) of an epidemic model was in-
troduced in Diekmann et al. [10] (and elaborated in [9, Chapter 5]) as a matrix
whose elements give the number of newly infected individuals in specific categories.
To obtain this matrix, we consider the equations of the system that describe the
production of new infections and changes in state among infected individuals. In
the initial stage of an epidemic, we can assume that the system (5) is near the DFE
(0, V̄1, 0, V̄2), and approximate the equations of classes I1, I2 with the linear system

y′1(t) = (β1(K1 − (1− σ1)V̄1)− (µ1 + γ1 + α1))y1(t) + α2y2(t),

y′2(t) = (β2(K2 − (1− σ2)V̄2)− (µ2 + γ2 + α2))y2(t) + α1y1(t),
(7)

where y1, y2 : R � R. By defining matrices F ,V ∈ R2×2 as

F =

(
β1(K1 − (1− σ1)V̄1) 0

0 β2(K2 − (1− σ2)V̄2)

)
,

V =

(
µ1 + γ1 + α1 −α2

−α1 µ2 + γ2 + α2

)
,

we obtain the compact form of the system (7) as

y′(t) = (F − V)y(t). (8)

The matrix F can be referred to as the transmission matrix, describing the pro-
duction of new infections, and −V is the transition matrix, describing changes in
state (see [9, 38] for some details). Clearly, F is a positive matrix, that is, all of
its entries are nonnegative, and it is easy to check that −V is positive-off-diagonal,
that is, all entries are nonnegative, possibly except for those at the diagonal. For a
square matrix M , we define the spectral bound s(M) and the spectral radius ρ(M)
by s(M) := sup{Re(λ) : λ ∈ σ(M)}, ρ(M) := sup{|λ| : λ ∈ σ(M)}, where σ(M)
denotes the set of eigenvalues of M . One can show that s(−V) < 0, which is equiva-
lent to the statement that V is invertible and V−1 is a positive matrix (for the proof
of the equivalence, see e.g. [9, Lemma 6.12]).

Following the definition of the NGM by Diekmann et al. [10], FV−1 ∈ R2×2 gives
the NGM of the system (8) as follows:

NGM =

(
β1(K1−(1−σ1)V̄1)(µ2+γ2+α2)
(µ1+γ1+α1)(µ2+γ2+α2)−α1α2

α2β1(K1−(1−σ1)V̄1)
(µ1+γ1+α1)(µ2+γ2+α2)−α1α2

α1β2(K2−(1−σ2)V̄2)
(µ1+γ1+α1)(µ2+γ2+α2)−α1α2

β2(K2−(1−σ2)V̄2)(µ1+γ1+α1)
(µ1+γ1+α1)(µ2+γ2+α2)−α1α2

)
.
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The basic reproduction number is defined as the dominant eigenvalue of the NGM
(whose existence is guaranteed by the Frobenius–Perron theorem). For our model,
we denote this number by R0, and we obtain R0 = ρ(FV−1). We state the following
proposition to show that R0 serves as a threshold quantity for the stability of the
zero solution of the system (8).

Proposition 2.4. The zero solution of y′(t) = (F − V)y(t) is asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Proof. We have seen that F is a positive matrix and −V is a positive-off-diagonal
matrix with s(−V) < 0. The stability of the zero steady state of y′(t) = (F −V)y(t)
is determined by the sign of s(F −V), which coincides with the sign of ρ(FV−1)− 1
(see [11, Theorem A.1]). The equality R0 = ρ(FV−1) completes the proof.

The statement of Proposition 2.4 extends to the nonlinear system (5) by the
principle of linearized stability.

Theorem 2.5. The disease free equilibrium of the system (5) is asymptotically stable
if R0 < 1, and unstable if R0 > 1.

Proposition 2.6. If β1 = 0 and β2 = 0, then there exists only one steady state, the
disease free equilibrium, which is globally asymptotically stable.

Proof. If the transmission rates vanish in both regions then the system (5) reduces
to the linear system

I ′1(t) = −(µ1 + γ1)I1(t)− α1I1(t) + α2I2(t),

V ′1(t) = φ1(K1 − I1(t))− (µ1 + θ1 + φ1)V1(t)− α1V1(t) + α2V2(t),

I ′2(t) = −(µ2 + γ2)I2(t)− α2I2(t) + α1I1(t),

V ′2(t) = φ2(K2 − I2(t))− (µ2 + θ2 + φ2)V2(t)− α2V2(t) + α1V1(t),

(9)

which has only one equilibrium (0, V̄1, 0, V̄2). It is easy to see that limt→∞(I1(t) +
I2(t)) = 0 and, as solutions obviously remain nonnegative for nonnegative initial
data, it follows that limt→∞ I1(t) = 0 and limt→∞ I2(t) = 0. Let us now investigate
the solutions of the system

W ′
1(t) = φ1K1 − (µ1 + θ1 + φ1)W1(t)− α1W1(t) + α2W2(t),

W ′
2(t) = φ2K2 − (µ2 + θ2 + φ2)W2(t)− α2W2(t) + α1W1(t).

(10)

We introduce the change of variables Z1(t) := W1(t) − V̄1 and Z2(t) := W2(t) − V̄2

to shift the equilibrium (V̄1, V̄2) to the origin. Then the asymptotic stability of the
zero solution of the system

Z ′1(t) = −(µ1 + θ1 + φ1 + α1)Z1(t) + α2Z2(t),

Z ′2(t) = −(µ2 + θ2 + φ2 + α2)Z2(t) + α1Z1(t)

implies that solutions of (10) converge to (V̄1, V̄2). Since limt→∞ I1(t) = 0 and
limt→∞ I2(t) = 0, we can consider (9)2 and (9)4 as nonautonomous equations with
nonautonomous terms I1(t) and I2(t), and conclude that (10) serves as the limit-
ing system of (9)2 and (9)4. Then, using the theory of asymptotically autonomous
systems [23, 36, 37], we conclude that limt→∞ V1(t) = V̄1 and limt→∞ V2(t) = V̄2.
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We note that the system (5) is equivalent to (10) in the disease free subspace,
which implies the following result.

Proposition 2.7. In the disease free subspace, there exists a unique equilibrium
(V̄1, V̄2), which is globally asymptotically stable.

3 The case of symmetric regions
In the sequel we assume that the regions are symmetric in the model parameters.
This assumption enables us to focus our attention on the impact of mobility on the
dynamics. By dropping parameter indices, we obtain the system

I ′1(t) = β(K − I1(t)− (1− σ)V1(t))I1(t)− (µ+ γ)I1(t)

− αI1(t) + αI2(t),

V ′1(t) = φ(K − I1(t))− σβV1(t)I1(t)− (µ+ θ + φ)V1(t)

− αV1(t) + αV2(t),

I ′2(t) = β(K − I2(t)− (1− σ)V2(t))I2(t)− (µ+ γ)I2(t)

− αI2(t) + αI1(t),

V ′2(t) = φ(K − I2(t))− σβV2(t)I2(t)− (µ+ θ + φ)V2(t)

− αV2(t) + αV1(t),

(T)

for the spread of the disease in two symmetric regions. Note that if σ = 1, which
means that the vaccine is completely ineffective, then the model is equivalent to the
standard SIS model. The effect of spatial dispersal on the dynamics in SIS-based
models has been studied extensively in the literature (see, for instance, [3, 18, 39, 40]
and many others), hence we don’t investigate this case any further in our paper.

Similarly as in Section 2, we learn that there is a unique DFE in the model (T),
where the formula for the steady state in the vaccinated classes is given by

V̄ =
φK

µ+ θ + φ
. (11)

It follows that the NGM takes the form

NGM =
β(K − (1− σ)V̄ )

(µ+ γ + α)2 − α2

(
µ+ γ + α α

α µ+ γ + α

)
,

and an explicit formula arises for the reproduction number, as

R0 =
βK

µ+ γ
· µ+ θ + σφ

µ+ θ + φ
.

By Proposition 2.5, R0 serves as a threshold for the stability of the DFE.
Equilibria of the model (T) are solutions of the four dimensional system

0 = β(K − Î1 − (1− σ)V̂1)Î1 − (µ+ γ)Î1 − αÎ1 + αÎ2,

0 = φ(K − Î1)− σβV̂1Î1 − (µ+ θ + φ)V̂1 − αV̂1 + αV̂2,

0 = β(K − Î2 − (1− σ)V̂2)Î2 − (µ+ γ)Î2 − αÎ2 + αÎ1,

0 = φ(K − Î2)− σβV̂2Î2 − (µ+ θ + φ)V̂2 − αV̂2 + αV̂1.

(12)
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From (12)1 and (12)3, we obtain the formulas

V̂1 =
K − Î1

1− σ
+

(µ+ γ + α)Î1 − αÎ2

βÎ1(σ − 1)
,

V̂2 =
K − Î2

1− σ
+

(µ+ γ + α)Î2 − αÎ1

βÎ2(σ − 1)

(13)

for V̂1 and V̂2 whenever Î1 6= 0 and Î2 6= 0, respectively. In the sequel, an equilibrium
of the model (T) will be denoted by E = (Î1, V̂1, Î2, V̂2), which can also represent
the DFE (0, V̄ , 0, V̄ ).

3.1 Disconnected regions

In the special case when α = 0 and the two regions are disconnected, we denote the
model (T) by (T0). The notation E0 = ((Î1)0, (V̂1)0, (Î2)0, (V̂2)0) will be used for a
steady state of the model (T0).

In the model (T0), the first two equations of (12) decouple from the last two
ones, and Î1 and Î2 arise independently from one another, as the solution of the
system

0 = β(K − Î − (1− σ)V̂ )Î − (µ+ γ)Î ,

0 = φ(K − Î)− σβV̂ Î − (µ+ θ + φ)V̂ .

Investigating this system, given by (1), was part of the analysis of the one-patch
model in [4]. More precisely, in terms of the reproduction number R(φ) of (1) and
the condition for the existence of backward bifurcation

σ(1− σ)(µ+ γ)φ > (µ+ θ + σφ)2, (c)

full characterization was given for the solutions. We note that the one-patch model
in [4] and our model (T) have the same reproduction numbers, i.e., R(φ) = R0.
Thus, here we summarize the results of [4] in terms of R0, but before we give the
following remark.

Remark 3.1. If σ = 0 (the vaccine provides perfect protection) then the condition
(c) for backward bifurcation cannot be satisfied. Hence, we have σ 6= 0 whenever the
condition (c) holds true. For the case when the condition (c) doesn’t hold, we allow
σ ≥ 0.

There is a DFE (Î , V̂ ) = (0, φK
µ+θ+φ

). In an endemic equilibrium with Î > 0, the

V -component is given by the formula V̂ = β(K−Î−(µ+γ))
β(1−σ)

, and Î arises as the solution
of AÎ2 +BÎ + C = 0, where

A = σβ,

B = (µ+ θ + σφ) + σ(µ+ γ)− σβK,

C =
(µ+ γ)(µ+ θ + φ)

β
− (µ+ θ + σφ)K.

(14)
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We denote the solutions of the steady state equation by

(Ĭ)1 =
−B −

√
B2 − 4AC

2A
, (Ĭ)2 =

−B +
√
B2 − 4AC

2A
.

Define the critical value 0 < Rc < 1 for the reproduction number as

Rc =
µ+ θ + σφ

µ+ θ + φ
·
σ(µ+ γ) + 2

√
σ(1− σ)(µ+ γ)φ− (µ+ θ + σφ)

σ(µ+ γ)
.

Then the following statements hold for the steady state equation:

(i) if R0 < Rc then Î = 0 is the only solution;

(ii) in the interval (Rc, 1), there exist exactly three solutions 0, (Ĭ)1 and (Ĭ)2 if (c)
holds, and one solution 0 otherwise;

(iii) if R0 = Rc or R0 = 1, there exist exactly two solutions 0 and (Ĭ)2 if (c) holds,
and one solution 0 otherwise;

(iv) there exist exactly two solutions 0 and (Ĭ)2 if R0 > 1.

The steady states of the two-patch model (T0) are characterized in the next
proposition. We recall that the two regions are disconnected, hence equilibria of
each region are attained independently of the dynamics of the other region.

Proposition 3.2. If the condition (c) is satisfied, then the model (T0) has one
equilibrium with (Î1)0 = (Î2)0 = 0 if R0 < Rc, nine equilibria with (Î1)0, (Î2)0 ∈
{0, (Ĭ)1, (Ĭ)2} if R0 ∈ (Rc, 1), and four equilibria with (Î1)0, (Î2)0 ∈ {0, (Ĭ)2} if
either R0 = Rc or R0 ≥ 1. If (c) does not hold, then for R0 ≤ 1 only the disease
free equilibrium exists, and there are four equilibria with (Î1)0, (Î2)0 ∈ {0, (Ĭ)2} when
R0 > 1.

The stability of these equilibria can be investigated by making use of the results
for the one-patch model. Following [4], we claim that in the one-patch model, an
equilibrium with Î = 0 is stable if R0 < 1 and unstable if R0 > 1; moreover,
Î = (Ĭ)1 is unstable and Î = (Ĭ)2 is stable, where they exist. It is thus clear that an
equilibrium E0 = ((Î1)0, (V̂1)0, (Î2)0, (V̂2)0) of the model (T0) is stable if and only if
both ((Î1)0, (V̂1)0) and ((Î2)0, (V̂2)0) are stable in the one-patch model. In the light
of these conclusions, we can also describe bifurcations of fixed points in (T0). The
results of the next propositions are also illustrated in Figure 1.

Proposition 3.3. If R0 < Rc, then only the disease free equilibrium exists in the
model (T0), and it is asymptotically stable. At R0 = Rc, four fully endemic steady
states with (Î1)0, (Î2)0 ∈ {(Ĭ)1, (Ĭ)2} bifurcate from a triple saddle-node bifurcation
point, that is, one stable and three unstable positive equilibria arise. In addition, from
two saddle-node bifurcation points there also emerge two pairs of partially endemic
steady states. If Rc < R0 < 1, then an equilibrium is unstable if (Î1)0 = (Ĭ)1 or
(Î2)0 = (Ĭ)1, and asymptotically stable otherwise. As R0 crosses 1, six non-trivial
steady states disappear. Two stable equilibria (0, (Ĭ)2), ((Ĭ)2, 0) lose their stability as
each undergoes a backward transcritical bifurcation. Triple backward transcritical bi-
furcation describes the situation when three unstable non-trivial equilibria bifurcate
into the stable DFE such that the DFE becomes unstable. For R0 > 1, the equi-
libira with infected components (0, 0), (0, (Ĭ)2) and ((Ĭ)2, 0) are unstable, and the
equilibrium where ((Î1)0, (Î2)0) = ((Ĭ)2, (Ĭ)2) is asymptotically stable.
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Figure 1: Equilibria of the model (T0) for R0 ∈ (0.9, 1.02). Color changes from
orange through yellow, green, blue and violet to red, as R0 increases from Rc to
1. Steady states for R0 < Rc and for R0 > 1 are depicted with orange and red,
respectively. At R0 = Rc, two large orange dots denote the saddle-node bifurcation
points along the I1 and I2 axes, and the third orange dot indicates the triple saddle-
node bifurcation point (one stable and three unstable branches) in the diagonal.
At R0 = 1, the system undergoes a triple backward transcritical bifurcation of
the DFE (three unstable steady states bifurcate into a stable equilibrium), and two
backward transcritical bifurcations of stable boundary equilibria (large red dots).
Parameters were set as K = 100, µ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16. This
makes Rc ≈ 0.9224, and the condition (c) for multiple non-trivial equilibria is also
satisfied.
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Remark 3.4. By excluding periodic solutions, it was shown in [4] that every solution
of the one-patch model converges to an equilibrium. In the two-patch model (T0) for
disconnected regions, the dynamics of the two regions are independent of one another,
thus there are no periodic solutions, and every solution approaches an equilibrium.
Since we know the possible equilibria and their domains of attraction if there is more
than one equilibrium, it follows that we have a complete understanding of the global
behavior of the model (T0).

3.2 Connected regions

We return to the model (T) and assume that α is positive, i.e., the regions are
connected by transportation. The existence of a unique DFE has been proved, so
now we focus on finding endemic equilibria E = (Î1, V̂1, Î2, V̂2) with Î1 > 0 and
Î2 > 0. Note that there is no partially endemic equilibrium, i.e., Îj > 0, Îk = 0

(j, k ∈ {1, 2}, j 6= k) is not possible since Î1 = 0 implies Î2 = 0 and vice versa.
By substituting V̂1 and V̂2 (derived in (13)) into (12)2 and (12)4, it follows from
straightforward calculations that

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î2

1 − Î2
2 ) + α(Î1 − Î2)Î2(µ+ φ+ βÎ1(1 + σ) + θ)

+ Î1Î2β(AÎ2
1 +BÎ1 + C)

)
,

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î2

2 − Î2
1 ) + α(Î2 − Î1)Î1(µ+ φ+ βÎ2(1 + σ) + θ)

+ Î1Î2β(AÎ2
2 +BÎ2 + C)

)
,

(15)

where A, B and C were defined in (14). Similarly to the case of disconnected regions,
here we again characterize the number of endemic equilibria in terms of R0 and
the condition (c). We note that the coefficient C can be expressed by the relation
βC = (1− R0)(µ+γ)(µ+ θ+φ), and remark that (c) is equivalent to the condition
that B < 0 holds when β is set to satisfy C = 0. First, we focus our attention on
the case when (c) does not hold.

Proposition 3.5. Assume that the condition (c) does not hold. Then there exist
no endemic equilibria in the model (T) if R0 ≤ 1, and there is a unique endemic
equilibrium if R0 > 1. For the endemic equilibrium, Î1 = Î2 = −B+

√
B2−4AC
2A

.

Proof. We note that A is positive. If R0 ≤ 1, or equivalently C ≥ 0, then B ≥ 0
also holds, since σ(1− σ)(µ+ γ)φ ≤ (µ+ θ + σφ)2 implies B ≥ 0 at R0 = 1 and B
increases as β decreases. Defining

f(x) = Ax2 +Bx+ C,

it is thus easy to see that f(x) > 0 whenever x > 0 and R0 ≤ 1.
We show by the method of contradiction that no endemic equilibria exist if R0 ≤ 1.
Let us assume that Î1 = Î2 holds for a positive solution of the system (15). Then
this system reduces to two equations as f(Î1) = 0 and f(Î2) = 0, which means that
f has at least one zero on (0,∞), a contradiction. On the other hand, if Î1 6= Î2 in
the endemic equilibrium then we can assume without loss of generality that Î1 > Î2

12



holds. From (15)1, the relation f(Î1) < 0 follows, but this is again impossible since
f(x) > 0 holds if x is positive.

We claim that no positive equilibrium with Î1 6= Î2 exists if R0 > 1. Indeed, if
Î1 > Î2 > 0, then to satisfy (15), the inequalities f(Î1) < 0 and f(Î2) > 0 should
hold. Because A is positive and C is negative, the equation f(x) = 0 has a single
zero on (0,∞) and thus, there is no Î1 and Î2, such that Î1 > Î2 > 0, f(Î1) < 0 and
f(Î2) > 0 are satisfied. If we look for endemic equilibria where Î1 = Î2, then from
(15) and the uniqueness of the positive solution of f(x) = 0, we get that the formula
−B+

√
B2−4AC
2A

gives Î1 and Î2 in the unique positive equilibrium.

Notation 3.6. We remark that by (13) it follows that V̂1 = V̂2 holds whenever
Î1 = Î2, i.e., an equilibrium with Î1 = Î2 is a “symmetric equilibrium”. On the other
hand, we can refer to an equilibrium with Î1 6= Î2 as a “non-symmetric equilibrium”.

Before proceeding with the stability analysis, we investigate the impact of the
condition (c) on the bifurcation structure. The following lemma is given for later
use.

Lemma 3.7. Assume that the condition (c) holds, and coefficients A, B and C are
given as in (14). Then, the equation

f(x) = Ax2 +Bx+ C = 0

has one positive solution if R0 ≥ 1, two distinct positive solutions if R0 ∈ (Rc, 1),
one positive solution if R0 = Rc, and no positive solutions if R0 < Rc.

Proof. We recall that the relation βC = (1 − R0)(µ + γ)(µ + θ + φ) holds. The
equation f(x) = 0 has exactly one positive solution if R0 > 1, as A > 0 and C < 0
imply the existence of two nonzero roots of opposite sign. Condition (c) yields B < 0
when β is set to satisfy C = 0. At R0 = 1, we have C = 0 and thus B < 0, so
x = −B/A is the only positive solution. We also get B2 − 4AC = B2 > 0 at
R0 = 1, hence due to the continuous dependence of B and R0 on β, there must be
an interval to the left of R0 = 1 where B < 0, C > 0 and B2 − 4AC > 0 hold,
and hence there exist two positive roots. This interval is given as (Rc, 1), since at
R0 = Rc we have B2− 4AC = 0, B < 0 and C > 0, so the equation f(x) = 0 has a
single positive solution x = −B/2A with double multiplicity. It is easy to see that
B2− 4AC decreases as we further decrease β, which implies that no real roots exist
for R0 < Rc.

Proposition 3.8. Assume that the condition (c) holds. If either R0 = Rc, or
R0 ≥ 1, then there is a unique endemic equilibrium (Î1, V̂1, Î2, V̂2) in the model (T),
for which Î1 = Î2 = (Ĭ)2. There are no endemic equilibria for R0 < Rc.

Proof. First, we show that if R0 is outside of the interval (Rc, 1), then there exist no
equilibria such that Î1 6= Î2. We consider steady state solutions where Î1 > Î2 > 0,
the case when Î2 > Î1 > 0 can be treated similarly. We derive from (15) that
f(Î1) < 0 and f(Î2) > 0 should hold for the equilibrium. The previous lemma
implies that f(x) = 0 has at most one positive solution if R0 ≤ Rc or R0 ≥ 1. It
thus follows that the inequalities f(Î1) < 0 and f(Î2) > 0 can never be satisfied if
Î1 > Î2 > 0.
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Next, we look for symmetric endemic equilibria (Î , V̂ , Î , V̂ ) in the cases when
R0 ≤ Rc and R0 ≥ 1. If Î1 = Î2 = Î, then the system (15) reduces to the single
equation

f(Î) = AÎ2 +BÎ + C = 0.

The statement of the proposition immediately follows from Lemma 3.7. We remark
that the positive root, whenever it is unique, is given as Î = −B+

√
B2−4AC
2A

= (Ĭ)2.

We learned from Propositions 3.5 and 3.8 that the existence of non-symmetric
equilibria is possible only if the condition (c) is satisfied and R0 ∈ (Rc, 1). In
what follows, we investigate steady states in this region of the parameter space. The
next result concerns symmetric endemic equilibira in the case when (c) holds and
Rc < R0 < 1.

Proposition 3.9. Assume that the condition (c) holds. If Rc < R0 < 1, then the
model (T) has exactly two positive symmetric equilibria. For these equilibria, Î1 = Î2

and Î1, Î2 ∈ {(Ĭ)1, (Ĭ)2}.

Proof. For symmetric equilibria, the system (15) again reduces to f(Î) = 0. Condi-
tions (c) and R0 ∈ (Rc, 1) are equivalent to A > 0, B < 0, C > 0 and B2−4AC > 0.
We refer to Lemma 3.7 to know that the equation AÎ2 +BÎ+C = 0 has two positive
distinct solutions (Ĭ)1 and (Ĭ)2.

Next, we summarize our results about symmetric endemic equilibria, and we
characterize their (local) stability.

Proposition 3.10. In the model (T), the symmetric equilibrium where Î = (Ĭ)2,
is locally asymptotically stable where it exists: on R0 ∈ (1,∞), and also on R0 ∈
(Rc, 1] in case (c) holds. The symmetric equilibrium where Î = (Ĭ)1, is unstable
where it exists: on R0 ∈ (Rc, 1) in case (c) holds.

Proof. The matrix of the linearization of (T) at a symmetric equilibrium (Î , V̂ , Î , V̂ )
reads

−βÎ − α −(1− σ)βÎ α 0

−(φ+ σβV̂ ) −(µ+ θ + φ+ σβÎ)− α 0 α

α 0 −βÎ − α −(1− σ)βÎ

0 α −(φ+ σβV̂ ) −(µ+ θ + φ+ σβÎ)− α

 ,

where we used the identity β(K − Î − (1 − σ)V̂ ) = µ + γ from (12). With the
notations P = −βÎ, Q = −(1−σ)βÎ, R = −(φ+σβV̂ ) and S = −(µ+θ+φ+σβÎ),
we arrive to the characteristic equation

(P − α− λ)2(S − α− λ)2 − 2((P − α− λ)QR(S − α− λ))

+Q2R2 − ((P − α− λ)2 − 2QR− (S − α− λ)2)α2 + α4 = 0.

The characteristic equation factors as

(QR− (P − α− λ)(S − α− λ)− α2 − α(P + S − 2α− 2λ))

· (QR− (P − α− λ)(S − α− λ)− α2 + α(P + S − 2α− 2λ)) = 0,
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so we see that the characteristic roots arise as the solution of one of the following
quadratic equations:

λ2 − (P + S)λ+ PS −QR = 0,

λ2 − (P + S − 4α)λ+ PS −QR + 4α2 − 2α(P + S) = 0.
(16)

Solutions of (16) depend on Î and V̂ ; however, by (13) the latter can be calculated
using the former, so the roots of (16)1 are obtained as

λ1(Î) =
P + S +

√
(P + S)2 − 4(PS −QR)

2
,

λ2(Î) =
P + S −

√
(P + S)2 − 4(PS −QR)

2
,

and the roots of (16)2 arise as

λ3(Î) =
P + S − 4α +

√
(P + S)2 − 4(PS −QR)

2
,

λ4(Î) =
P + S − 4α−

√
(P + S)2 − 4(PS −QR)

2
.

Using β(K − Î − (1− σ)V̂ ) = µ+ γ, we derive

PS −QR = βÎ(2σβÎ + (µ+ θ + σφ) + σ(µ+ γ)− σβK) = βÎ(2AÎ +B),

and it is easy to check that 2A(Ĭ)2 +B > 0 and 2A(Ĭ)1 +B < 0 hold. As P +S < 0
for both (Ĭ)1 and (Ĭ)2, moreover PS−QR is positive for (Ĭ)2 and negative for (Ĭ)1,
we conclude that Re(λ1((Ĭ)1)) > 0 and Re(λ1((Ĭ)2)) < 0. It follows immediately
that the equilibrium (Î , V̂ , Î , V̂ ) with Î = (Ĭ)1 is unstable, where it exists. On the
other hand, α > 0 implies that Re(λ3) < Re(λ1) and Re(λ4) < Re(λ2) hold, so by
Re(λ2) < Re(λ1) we learn that the real part of λ1 dominates the real part of the
other three roots. It follows that the symmetric equilibrium with Î = (Ĭ)2 is locally
asymptotically stable, where it exists.

Remark 3.11. The existence and stability of symmetric equilibria is independent
of the mobility parameter α.

We note that Proposition 3.10 completes our understanding of the bifurcation
behavior of the model (T) in case the condition (c) does not hold. The following
corollary is given to summarize the findings of Propositions 3.5 and 3.10.

Corollary 3.12. Assume that the condition (c) does not hold. Then the system
(T) undergoes a forward transcritical bifurcation at R0 = 1, i.e., the disease free
equilibrium loses its stability as R0 crosses 1 from the left to the right, and the single
positive steady state emerging at R0 = 1 is asymptotically stable.

We recall that the conditions (c) and R0 ∈ (Rc, 1) are necessary for the exis-
tence of non-symmetric endemic steady states. The next result characterizes these
equilibria.
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Proposition 3.13. Assume that the condition (c) holds. If Rc < R0 < 1, then
there exist zero, two, four or six non-symmetric endemic equilibria (i.e., Î1 6= Î2) in
the model (T). For such equilibria, (Î1, Î2) ∈ ((Ĭ)1, (Ĭ)2) × (0, (Ĭ)1) if Î1 > Î2, and
(Î1, Î2) ∈ (0, (Ĭ)1)× ((Ĭ)1, (Ĭ)2) if Î1 < Î2.

Proof. Earlier in this section, the following system was derived for endemic equilib-
ria:

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î2

1 − Î2
2 ) + α(Î1 − Î2)Î2(µ+ φ+ βÎ1(1 + σ) + θ)

+ Î1Î2β(AÎ2
1 +BÎ1 + C)

)
,

0 =
1

βÎ1Î2(σ − 1)

(
α2(Î2

2 − Î2
1 ) + α(Î2 − Î1)Î1(µ+ φ+ βÎ2(1 + σ) + θ)

+ Î1Î2β(AÎ2
2 +BÎ2 + C)

)
,

(15)

where
A = σβ,

B = (µ+ θ + σφ) + σ(µ+ γ)− σβK,

C =
(µ+ γ)(µ+ θ + φ)

β
− (µ+ θ + σφ)K.

From (15)1 + (15)2 and (15)1− (15)2, and using the fact that Î1, Î2 6= 0 and Î1 6= Î2,
we obtain

0 = −α(µ+ φ+ θ)(Î1 − Î2)2 + Î1Î2β(A(Î2
1 + Î2

2 ) +B(Î1 + Î2) + 2C),

0 = 2α2(Î1 + Î2) + α(Î1Î2β(1 + σ) + (Î1 + Î2)(µ+ φ+ θ)) + Î1Î2β(A(Î1 + Î2) +B),

which we reformulate as

0 = −α(µ+ φ+ θ)(x2 − 4y) + yβ(A(x2 − 2y) +Bx+ 2C),

0 = 2α2x+ α(yβ(1 + σ) + x(µ+ φ+ θ)) + yβ(Ax+B),
(17)

where we let x = Î1 + Î2 and y = Î1Î2.
Let us assume that Î1 > Î2 at the equilibrium. Then it follows from (15)1 that

AÎ2
1 +BÎ1 +C < 0, which implies (Ĭ)1 < Î1 < (Ĭ)2. Similarly, using (15)2 we derive

AÎ2
2 +BÎ2+C > 0, so either Î2 < (Ĭ)1 or Î2 > (Ĭ)2 holds. On the other hand, it follows

from (17)2 and α > 0, x, y > 0 that x = Î1 + Î2 <
−B
A

should be satisfied, which
makes Î2 > (Ĭ)2 impossible. We conclude that if Î1 > Î2 then (Î1, Î2) ∈ ((Ĭ)1, (Ĭ)2)×
(0, (Ĭ)1), and similar arguments lead to the result that (Î1, Î2) ∈ (0, (Ĭ)1)×((Ĭ)1, (Ĭ)2)
for Î2 > Î1.

We eliminate y using (17)2 and substitute into (17)1 to give an equation of x of
fourth order. As (x, y) = (0, 0) is a solution of (17), there are at most three solutions
which satisfy x, y > 0. This implies that for Î1 6= Î2, the system (15) can have zero,
two, four or six solutions, because any a, b > 0 which satisfy a+ b = x, ab = y, may
serve as (a, b) = (Î1, Î2) and (b, a) = (Î1, Î2).

Unfortunately, due to the complicated coefficients of the fourth order equa-
tion, we are unable to determine the exact number of non-symmetric equilibria.
In the next result, a region in the parameter space will be described where six non-
symmetric steady states exist. Furthermore, we illustrate with examples in Section
4 that each of the other scenarios can also be realized.
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We revisit the results of Propositions 3.2 and 3.3 for the steady states of the
model in the case of disconnected regions. If α = 0, the condition (c) holds and
R0 is in the interval (Rc, 1), then the system has nine equilibria: three of them are
symmetric for the two regions and they are given as Î1 = Î2 = 0, Î1 = Î2 = (Ĭ)1,
Î1 = Î2 = (Ĭ)2, while Î1 6= Î2 holds for the remaining six steady states. Now we prove
that the model (T) for connected regions has a similar structure of steady states if
conditions (c) and R0 ∈ (Rc, 1) are satisfied, and α is close to 0. More precisely,
in addition to the three symmetric equilibria which exist for any value of α (see
Proposition 3.9), the system also possesses six non-symmetric equilibria if mobility
is incorporated with sufficiently small volumes into the model.

Proposition 3.14. Assume that the condition (c) holds. If Rc < R0 < 1, then
there is an α∗ such that the model (T) has six non-symmetric equilibria for any
α ∈ [0, α∗).

Proof. We let F = (FI1 , FV1 , FI2 , FV2)
T , F (Î1, V̂1, Î2, V̂2, α) : R5 � R4, and define

FI1 , FV1 , FI2 and FV2 as the right hand side of the first, second, third and fourth
equation, respectively, of (12). Then the system (12) reformulates as

0 = FI1(Î1, V̂1, Î2, V̂2, α),

0 = FV1(Î1, V̂1, Î2, V̂2, α),

0 = FI2(Î1, V̂1, Î2, V̂2, α),

0 = FV2(Î1, V̂1, Î2, V̂2, α).

(18)

For α = 0, we denote the solutions of (18) by E0 = ((Î1)0, (V̂1)0, (Î2)0, (V̂2)0). As
it was derived in Proposition 3.2, there are nine such solutions and (Î1)0, (Î2)0 ∈
{0, (Ĭ)1, (Ĭ)2}. Using (12), we obtain

∂FI1

∂Î1

= β(K − Î1 − (1− σ)V̂1)− βÎ1 − (µ+ γ + α),

∂FI1

∂V̂1

= −β(1− σ)Î1,
∂FI1

∂Î2

= α,
∂FI1

∂V̂2

= 0,

∂FV1

∂Î1

= −φ− σβV̂1,

∂FV1

∂V̂1

= −σβÎ1 − (µ+ θ + φ+ α),
∂FV1

∂Î2

= 0,
∂FV1

∂V̂2

= α,

and similar identities hold for the partial derivatives of FI2 and FV2 . Then the Jaco-
bian ∂F

∂(Î1,V̂1,Î2,V̂2)T
, evaluated at α = 0 and (Î1, V̂1, Î2, V̂2) = ((Î1)0, (V̂1)0, (Î2)0, (V̂2)0),

has the form (
A1,1 O
O A2,2

)
,

where O denotes the 2× 2 matrix with zeros, and

A1,1 =

(
β(K − 2(Î1)0 − (1− σ)(V̂1)0)− (µ+ γ) −β(1− σ)(Î1)0

−φ− σβ(V̂1)0 −σβ(Î1)0 − (µ+ θ + φ)

)
,

17



A2,2 =

(
β(K − 2(Î2)0 − (1− σ)(V̂2)0)− (µ+ γ) −β(1− σ)(Î2)0

−φ− σβ(V̂2)0 −σβ(Î2)0 − (µ+ θ + φ)

)
.

If (Îj)
0 = 0 for any j ∈ {1, 2} then we obtain

det(Aj,j) = −(β(K − (1− σ)(V̂1)0)− (µ+ γ))(µ+ θ + φ)

= (µ+ θ + φ)(µ+ γ)(1− R0),

since (Îj)
0 = 0 implies (V̂j)

0 = V̄ . On the other hand, we know that β(K − (Îj)
0 −

(1− σ)(V̂j)
0)− (µ+ γ) = 0 if (Îj)

0 6= 0, hence in this case we get

det(Aj,j) = β(Îj)
0(σβ(Îj)

0 + (µ+ θ + φ))− (φ+ σβ(V̂j)
0)β(1− σ)(Îj)

0

= β(Îj)
0(2A(Îj)

0 +B).

It is clear that (µ+θ+φ)(µ+γ)(1−R0) 6= 0 for R0 ∈ (Rc, 1), and (Îj)
0 ∈ {(Ĭ)1, (Ĭ)2}

yields β(Îj)
0(2A(Îj)

0 +B) 6= 0.
It follows that the Jacobian of the system (18) evaluated at α = 0, (Î1, V̂1, Î2, V̂2) =

E0, is nonsingular. Then, by means of the implicit function theorem, there is an in-
terval [0, α∗), an open set U ∈ R4 and a unique continuously differentiable function
g = (gI1 , gV1 , gI2 , gV2) : [0, α∗) � U such that g(0) = E0 and F (g(α), α) = 0 for
α ∈ [0, α∗). This means that g(α) is an equilibrium of the model (T) for connected
regions.

We conclude that if α is close to 0 then the system (12) has nine solutions, and
each of them is obtained by a unique function of α on an interval [0, α∗). This also
means that if the mobility parameter is sufficiently small, then for any equilibrium
E0 of the disconnected system there exists an equilibrium in the model (T) for
connected regions (a solution of the system (12)), which is close to E0. It remains to
show that g(α) ≥ 0 holds on [0, α∗), this is, the equilibrium of (T) takes nonnegative
values and thus, is biologically meaningful.

Steady states for the vaccinated classes arise by one of the formulas (11) and
(13), thus it is clear that gI1 , gI2 ≥ 0 yields g ≥ 0. We know from Proposition 3.2
that (T) has a DFE for any positive α, thus by the uniqueness of g, we obtain
gI1(α) = gI2(α) = 0 for α ∈ [0, α∗) if ((Î1)0, (Î2)0) = (0, 0). Any equilibrium E0 =
((Î1)0, (V̂1)0, (Î2)0, (V̂2)0) with (Î1)0, (Î2)0 ∈ {(Ĭ)1, (Ĭ)2} is a positive equilibrium,
hence α∗ can be chosen such that g(α) > 0 holds for α < α∗. Next, we consider
an equilibrium E0 where (Î1)0 = 0 and (Î2)0 > 0, and we remark that the case
when (Î2)0 = 0, (Î1)0 > 0 can be treated similarly. We claim that dgI1

dα
(0) > 0 holds.

Indeed, using (12)1 and the definition of F , we obtain

d

dα
FI1(g(α), α) = 0,

β(K − dgI1
dα

(α)− (1− σ)
dgV1
dα

(α))gI1(α) + β(K − gI1(α)− (1− σ)gV1(α))·

· dgI1
dα

(α)− (µ+ γ + α)
dgI1
dα

(α)− gI1(α) + α
dgI2
dα

(α) + gI2(α) = 0,

which we reformulate and evaluate at α = 0 to get

β(K − (1− σ)gV1(0)− (µ+ γ)) · dgI1
dα

(0) = −gI2(0),
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where we used the fact that (Î1)0 = gI1(0) = 0. We note that gV1(0) = V̄ , and
gI2(0) = (Î2)0 > 0 holds by assumption. Hence we derive

dgI1
dα

(0) =
−(Î2)0

β(K − (1− σ)V̄1 − (µ+ γ))
,

dgI1
dα

(0) =
(Î2)0

(µ+ γ)(1− R0)
,

which is positive if and only if R0 < 1. By dgI1
dα

(0) > 0 we know that gI1 is positive
for small α. From (Î2)0 > 0 it follows that gI2(α) > 0 holds if α is sufficiently close
to 0, thus we conclude that α∗ can be defined such that g(α) is positive for all
α ∈ [0, α∗).

Summarizing, for α sufficiently small, the model (T) has nine steady states. It
was shown in Propositions 2.2 and 3.9 that the DFE and two positive symmetric
equilibria exist in the model, independently of the value of α. The remaining six
steady states are thus non-symmetric equilibria. The proof is thus complete.

We conclude that introducing traveling with small volumes does not change the
stability of equilibria.

Proposition 3.15. In Proposition 3.14, α∗ can be defined such that the equilibrium
g(α) is locally asymptotically stable (unstable) for α ∈ (0, α∗) whenever g(0) = E0

is locally asymptotically stable (unstable).

Proof. The stability of equilibria of the model for disconnected regions has been
discussed in Proposition 3.3. If (Î1)0, (Î2)0 ∈ {0, (Ĭ)2} then the steady state E0 =
((Î1)0, (V̂1)0, (Î2)0, (V̂2)0) is locally asymptotically stable, while any equilibrium with
the component (Ĭ)1 is unstable. If E0 is an asymptotically stable equilibrium, then
all eigenvalues of ∂F

∂(Î1,V̂1,Î2,V̂2)T
(E0, 0) have negative real part. Thus, if α is sufficiently

small, then it follows by continuity of eigenvalues with respect to parameters that
∂F

∂(Î1,V̂1,Î2,V̂2)T
(g(α), α) has only eigenvalues with negative real part.

We claim that for an unstable equilibrium E0, the Jacobian has an eigenvalue
with positive real part. If so, then this property is preserved for g(α) as well if α is
close to 0. Indeed, if (Îj)

0 = (Ĭ)1 for any j ∈ {1, 2}, then detAj,j = β(Ĭ)1(2A(Ĭ)1+B)

is negative, and by β(K − (Îj)
0 − (1 − σ)(V̂j)

0) − (µ + γ) = 0, the first element of
the first row in Aj,j simplifies to −β(Ĭ)1, which implies that the matrix has negative
trace. It follows immediately that Aj,j has a positive real eigenvalue.

Proposition 3.16. Non-symmetric equilibria of the model (T) (if they exist), get
arbitrarily close to ((Ĭ)1, (Ĭ)1) as α→∞.

Proof. We show that for every ε > 0, there exists an αε such that |Î1 − Î2| < ε
whenever α > αε.

Let us assume that there is an ε > 0 such that for any large α, there exists a
steady state with |Î1 − Î2| ≥ ε. Without loss of generality, we may suppose that
Î1 > Î2. By Proposition 3.13, we know that Î1 > (Ĭ)1 and Î2 > 0. Then, from ((15))1

we derive

(Î1 − Î2)(α2(Î1 + Î2) + αÎ2(µ+ φ+ βÎ1(1 + σ) + θ)) = −Î1Î2β(AÎ2
1 +BÎ1 + C),

ε · α2(Î1 + Î2) ≤ −Î1Î2β(AÎ2
1 +BÎ1 + C).
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The left hand side of the last inequality is positive and unbounded, and it fol-
lows from the positivity of A that the right hand side is bounded from above. We
get by contradiction that for large α, the components for the infected classes of a
non-symmetric equilibrium are arbitrarily close to each other. We also know that
(Î1, Î2) ∈

(
((Ĭ)1, (Ĭ)2) × (0, (Ĭ)1)

)
∪
(
(0, (Ĭ)1) × ((Ĭ)1, (Ĭ)2)

)
(see Proposition 3.13),

which yields the statement.

We remark that the existence and stability of symmetric equilibria was fully
characterized in this section. It was also noted in Remark 3.11 that these fixed
points are independent of α. However, our results on non-symmetric steady states
are only partial; as a matter of fact, we are going to show that these equilibria
are sensitive in α and other model parameters in the sense that various interesting
bifurcations can occur in the model. We conclude this section with a summary of
our findings in the case when (c) holds.

Corollary 3.17. Assume that the condition (c) holds. Then the system (T) exhibits
a saddle-node bifurcation at R0 = Rc, where two symmetric equilibria emerge.
Depending on the value of α and other model parameters, there can exist 6 non-
symmetric steady states on the interval R0 ∈ (Rc, 1). In such case, the stable dis-
ease free equilibrium coexists with three stable and five unstable non-trivial equilibria.
There are no non-symmetric steady states for R0 ≥ 1. The system undergoes a back-
ward transcritical bifurcation at R0 = 1, where the unstable symmetric equilibrium
bifurcates into the disease free equilibrium, and disease free equilibrium loses its sta-
bility. The symmetric endemic steady state which is stable on R0 ∈ (Rc, 1), exists
for R0 ≥ 1 and is stable.

4 Numerical simulations for the model (T)
We conducted numerical simulations in order to illustrate the rich bifurcation behav-
ior in the model (T). In Section 3, the dynamics was fully described in the case when
the condition (c) for multiple positive equilibria does not hold. Moreover, we char-
acterized steady states and their stability when (c) is satisfied and either R0 < Rc

or R0 > 1. Under the condition (c), there are two symmetric positive equilibria in
addition to the DFE in the interval (Rc, 1), and they coexist with six non-symmetric
steady states if the travel rate between the regions is sufficiently small. However, as
it will be illustrated in the section, non-symmetric equilibria are sensitive in α, i.e.,
they disappear for larger travel volumes.

For all simulations in this section, we fix model parameters as K = 100, µ = 0.1,
γ = 12, θ = 0.5, σ = 0.2, φ = 16. It is easy to check that Rc ≈ 0.9224, and the
condition (c) is satisfied. For four different values of R0 in the interval (Rc, 1), we
illustrate in Figure 2 how the positive steady states are destroyed by the increase in
the travel rate between the regions. With all the other parameters fixed, we let α
increase from 0 through small volumes to larger rates, and depict the equilibria with
colors changing from green (α = 0) through blue and violet to red (α = 1). Varying
α has no effect on the steady states in the diagonal (see also Proposition 3.9). On
the other hand, non-symmetric fixed points only exist for small travel volumes. More
precisely, there are six such equilibria for α = 0 (see Proposition 3.2 for disconnected
regions), which continue to exist for small volumes of travel, and they move along
some curves as a function of the travel rate.
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(a) R0 ≈ 0.9261 (β = 0.4895)

0 5 10 15 20 25
0

5

10

15

20

25

I1
I

(b) R0 ≈ 0.9299 (β = 0.4915)

0 5 10 15 20 25
0

5

10

15

20

25

I1

I

(c) R0 ≈ 0.9317 (β = 0.4925)
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(d) R0 ≈ 0.9639 (β = 0.5095)

Figure 2: Equilibria of the model (T) when Rc < R0 < 1 is satisfied and the
travel rate α varies between 0 and 1. The fixed points in the diagonal exist for all
travel volumes, and for α = 1 (red) there are no other equilibria. In case when the
regions are disconnected (i.e., α = 0), there also exist six non-symmetric steady
states (green). Each such fixed point moves along a unique continuous function, as
α increases (color changes from green through blue and violet to red). For larger
travel volumes, non-symmetric equilibria disappear as they collide (saddle-node bi-
furcation) or bifurcate into a fixed point in the diagonal (pitchfork–like bifurcation,
with three unstable branches). Parameters were set as K = 100, µ = 0.1, γ = 12,
θ = 0.5, σ = 0.2, φ = 16. This makes Rc ≈ 0.9224, and the condition (c) for
multiple non-trivial equilibria is also satisfied.
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(a) α = 0.002
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Figure 3: Solutions of the model (T) for four values of α, when the bifurcations of
equilibria are as illustrated in Figure 2 (a). Solutions converging to an equilibrium
point are indicated with the same color. There are several attractors when the travel
volume is small; however, for larger values of α, all solutions seem to converge to the
stable equilibria in the diagonal. Parameters were set as K = 100, µ = 0.1, γ = 12,
θ = 0.5, σ = 0.2, φ = 16, β = 0.4895. This makes R0 ≈ 0.9261 and Rc ≈ 0.9224,
and the condition (c) for multiple non-trivial equilibria is also satisfied.
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(d) α = 1

Figure 4: Solutions of the model (T) for four values of α, when the bifurcations of
equilibria are as illustrated in Figure 2 (c). Solutions converging to an equilibrium
point are indicated with the same color. There are several attractors when the travel
volume is small; however, for larger values of α, all solutions seem to converge to the
stable equilibria in the diagonal. Parameters were set as K = 100, µ = 0.1, γ = 12,
θ = 0.5, σ = 0.2, φ = 16, β = 0.4925. This makes R0 ≈ 0.9317 and Rc ≈ 0.9224,
and the condition (c) for multiple non-trivial equilibria is also satisfied.
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Figure 5: Equilibria of the model (T) in the case of isolated regions (α = 0, green)
and connected regions (α > 0, blue), as R0 varies between 0.9 and 1.03. Blue dots in
the diagonal overlap green dots. There are no endemic steady states if R0 < Rc, and
for R0 > 1 only a single, symmetric positive equilibrium exists if α > 0. The four
figures illustrate that, depending on the value of α and R0, the model may have zero,
two, four or six non-symmetric fixed points when R0 ∈ (Rc, 1). Parameters were
set as K = 100, µ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16. This makes Rc ≈ 0.9224,
and the condition (c) for multiple non-trivial equilibria is also satisfied.
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Figure 2 demonstrates that for larger values of α, non-symmetric equilibria vanish
in two saddle-node bifurcation points and a pitchfork–like bifurcation point of the
unstable positive symmetric equilibrium. It is interesting to note the differences in
the bifurcation diagrams at different values of R0. In case of Figures 2 (a) and
(b) when R0 is only slightly greater than Rc, two fully endemic equilibria move
towards the diagonal and two other pairs of steady states—those which are partially
endemic for α = 0—collide in saddle-node bifurcations. This behavior is different
from that experienced for larger values of R0, depicted in Figures 2 (c) and (d). In
these diagrams, the fully endemic fixed points undergo saddle-node bifurcations, and
there are two partially endemic equilibria of the disconnected system, which continue
to exist with traveling until they bifurcate into the unstable positive steady state at
the diagonal. We recall the result of Theorem 3.13 to remark that non-symmetric
equilibria and their bifurcations are contained in (Î)1, (Î)2 ∈

(
(Ĭ)1, (Ĭ)2)×(0, (Ĭ)1

)
∪(

0, (Ĭ)1)× ((Ĭ)1, (Ĭ)2
)
.

Figures 3 and 4 give some more insight into the dynamical behavior in the model.
We noted two different bifurcation structures in Figure 2. Now we pick two param-
eter settings which result in different bifurcations, and investigate the long-time
behavior of solutions and stability of steady states for various values of α. Dots rep-
resent equilibria, and solutions converging to a particular steady state are depicted
with the same color. It was shown in Proposition 3.15 that for small volumes of
traveling, each of the nine steady states of the model (T) is close to a steady state
of disconnected regions (α = 0), and has the same stability. Figures 3 (a) and 4
(a) further support this result. On the other hand, equilibria move and sometimes
disappear as α increases, hence the attractors of certain solutions change. We illus-
trate with Figures 3 (b), (c) (d) and Figures 4 (b), (c), (d) that the difference in
the dynamics for R0 = 0.926068 and R0 = 0.931744, detected in the bifurcation
phenomena (Figures 2 (a) and (c)), also manifests itself in the long-time behavior
of solutions.

Figure 5 shows equilibria (blue dots) of the model (T) for four different values of
the travel rate α. We also depict the steady states of the model (T0) for disconnected
regions (green dots). For R0 < Rc, only the DFE exists. When the regions are
disconnected, two symmetric endemic and six non-symmetric endemic equilibria
bifurcate as R0 crosses Rc, and only three of these fixed points continue to exist
when R0 exceeds 1 (see Proposition 3.3). Incorporating traveling between the regions
into the model does not have any impact on symmetric equilibria, that is, blue
dots in the diagonal overlap fixed points of the disconnected system. However, the
structure of non-symmetric steady states strongly depends on the value of the travel
parameter. For instance, incorporating traveling at a small rate (e.g., α = 1/500 in
Figure 5 (a)) modifies equilibrium values only slightly in comparison to the case of
disconnected regions, but for α = 1 (Figure 5 (d)) the system of connected regions
has no non-symmetric steady states. The statement of Proposition 3.9 about the
possible numbers of non-symmetric equilibria is also demonstrated with these plots.

For a fixed travel rate α = 0.05, we show another figure for the steady states
of the system (T). In the 3D– and 2D–plots of Figure 6, we indicate with different
colors how the structure of equilibria changes when we vary R0 in (Rc, 1). From the
orange color corresponding to R0 = Rc, the color evolves through yellow, green,
blue, and violet into red, as R0 increases to 1. We learned from Proposition 3.9 that
two symmetric steady states (one unstable and one stable) are born at R0 = Rc;
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(c) Bifurcation diagram.

Figure 6: Equilibria of the model (T) for α = 0.05, as R0 varies between 0.9 and
1.02. Color changes from orange through yellow, green, blue and violet to red, as
R0 increases from Rc to 1. Steady states for R0 < Rc and for R0 > 1 are depicted
by orange and red, respectively. From a saddle-node bifurcation point, one stable
and one unstable symmetric positive equilibrium bifurcates at R0 = Rc (large
orange dot), which coexist with the DFE for all values of R0 ∈ (Rc, 1). As R0

exceeds Rc, two non-symmetric unstable fixed points emerge from the unstable
symmetric equilibrium (orange), then two saddle-node bifurcations occur (yellow)
to give rise to four other non-symmetric steady states, pairwise stable–unstable.
As R0 further increases, four non-symmetric fixed points cease to exist as they
pairwise collide in two subcritical saddle-node bifurcations (green), then finally all
non-symmetric steady states disappear when two unstable fixed points bifurcate
into the unstable symmetric positive equilibrium (pink). At R0 = 1, the dynamics
undergoes a backward transcritical bifurcation (large red dot). Parameters were set
as K = 100, µ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16. This makes Rc ≈ 0.9224,
and the condition (c) for multiple non-trivial equilibria is also satisfied.
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the large orange dot in the plots indicates this saddle-node bifurcation point. From
rigorous numerical computations (to be discussed below) we derive that two unsta-
ble equilibria emerge from the unstable symmetric fixed point when R0 is slightly
greater than Rc (orange), and the existence of two saddle-node bifurcation points
(yellow) are also confirmed, from which four non-symmetric steady states bifurcate
(pairwise unstable–stable). As R0 increases, four non-symmetric fixed points disap-
pear (green, two subcritical saddle-node bifurcations), then the unstable equilibrium
in the diagonal absorbs the remaining two non-symmetric steady states (pink, two
unstable fixed points join into the symmetric equilibrium). Again, by the results
of Proposition 3.9, the system undergoes a backward transcritical bifurcation at
R0 = 1, which is indicated by a large red dot in the figure.

In the model (T0) for disconnected regions, a triple saddle-node bifurcation oc-
curs at R0 = Rc (see Proposition 3.3). We conjecture that incorporating traveling
between the regions results in the split-up of this bifurcation point, so that one
stable and three unstable fixed points emerge in the model (T) when R0 is close
to Rc. Similarly, the system (T0) undergoes a triple backward bifurcation of the
DFE at R0 = 1, which is deformed for positive travel rates: in the model (T) for
connected regions, two unstable fixed points join into another unstable steady state
as R0 approaches 1, then at R0 = 1 this unstable equilibrium bifurcates into the
DFE in a (simple) backward bifurcation.

5 Rigorous set-oriented numerical computations for
the model (T)

In order to complement the analytical calculations, and to confirm selected results
of the numerical simulations, we conducted rigorous set-oriented numerical analysis
of global dynamics encountered in the system (T). We applied the framework that
was developed in [1] (see also [6]) for discrete-time semi-dynamical systems. This
approach has already been applied successfully to some other systems (see e.g. [21,
33]) and in each case provided valuable information. Since the computational method
was introduced in [1] for continuous maps only, its extension to ODEs was developed
by means of applying this method to a time-t map of the flow. The correctness of
this approach is justified in Section 5.2; the reader is referred to [13] for an in-depth
discussion of some technical aspects of the adaptation of the method to ODEs.

The core idea behind the computational method introduced in [1] is to decompose
the dynamics at each selection of parameters into a collection of isolating neighbor-
hoods that encompass all the chain recurrent dynamics in the phase space (e.g.,
fixed points or periodic solutions) and connecting orbits between them (and also
orbits that run away in forward or backward time). The isolating neighborhood are
constructed in such a way that connecting orbits between them define a strict partial
order, like in a gradient system. This construction is carried out for small subsets of
parameters. Then adjacent subsets of parameters for which equivalent decomposi-
tions have been found are joined together to form larger classes. As a result, regions
of parameters which yield equivalent global dynamics are identified, and schematic
description is computed for the different types of global dynamics.

We begin with a description of this method. Then we explain how this method
is applied to the system (T). Finally, we describe the results obtained, and discuss
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how they relate to the findings shown in the previous sections. The software used
for the computations, as well as the results, are all made publicly available at the
website [32].

5.1 Description of the numerical method

Let T = Z or T = R. Let ϕ : Rn × T 3 (x, t) 7→ ϕt(x) ∈ Rn be a dynamical system;
that is, for all x, t1, t2, we have ϕ(x, 0) = x and ϕ(ϕ(x, t1), t2) = ϕ(x, t1 + t2). If
T = R then we call ϕ a continuous-time dynamical system (or a flow for short), and
if T = Z then we call it a discrete-time dynamical system.

A set S is called an invariant set with respect to ϕ if ϕ(S,T) = S. The invariant
part of a set N , denoted InvN , is the largest, in terms of inclusion, invariant set
contained in N . The set N is called an isolating neighborhood if N is compact and
InvN ⊂ intN , where intN denotes the interior of N . S is called an isolated invariant
set if S = InvN for some isolating neighborhood N .

A Morse decomposition (see [8]) of an isolated invariant set X (note that X may
be the entire phase space) with respect to ϕ is a finite collection of disjoint isolated
invariant subsets S1, . . . , Sq of X (called Morse sets) with a strict partial ordering ≺
on the index set {1, . . . , q} such that for every x ∈ X \ (S1 ∪ · · · ∪ Sq) and for every
orbit {γt}t∈T such that γ0 = x there exist indices i ≺ j such that γt → Si as t→∞
and γt → Sj as t→ −∞.

A rectangular set is a product of compact intervals. Given a rectangular set
R = [a1, a1 + δ1] × · · · × [an, an + δn] ⊂ Rn and integer numbers s1, . . . , sn > 0, we
call the following set an s1 × · · · × sn uniform rectangular grid in R:

Gs1,...,sn(R) :=

{ n∏
i=1

[ai +
ji
si
δi, ai +

ji + 1

si
δi] :

ji ∈ {0, . . . , si − 1}, i ∈ {1, . . . , n}
}

The individual boxes in the grid are indexed by the n-tuples (j1, . . . , jn).
Now consider an m-parameter family of flows on Rn:

ϕ : Rn × Rm × R 3 (x, p, t) 7→ ϕpt (x) ∈ Rn.

Let B ⊂ Rn and P ⊂ Rm be rectangular sets.
Let τ > 0, and consider the m-parameter discrete-time dynamical system ϕτ

obtained by restriction of ϕ to Rn × Rm × τZ. Let d1, . . . , dn and s1, . . . , sm be
positive integers. For each parameter box p̂ ⊂ P in the s1 × · · · × sm uniform
rectangular grid in P , and for each box b in the d1 × · · · × dn uniform rectangular
grid in B, we use the CAPD software library [7] to compute a rigorous outer estimate
for ϕ(b, p̂, τ). In this way, we apply the computational method introduced in [1] to
ϕτ . In particular, the family of sets N1, . . . , Nq ⊂ B is constructed with some strict
partial ordering ≺ on {1, . . . , q}, such that for each p ∈ p̂, each set Ni, i = 1, . . . , q,
is an isolating neighborhood in B, and whenever a possibility of the existence of
an orbit from Ni to Nj is detected, the relation Nj ≺ Ni is set to hold true. The
family {Si := InvNi : i = 1, . . . , q} forms a Morse decomposition of InvB with
respect to ϕpτ with the ordering ≺, where ϕpτ = ϕτ (·, p, ·) indicates the dynamical
system ϕτ with the parameter fixed to p. The sets Ni are constructed as unions of
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closed boxes with respect to the d1 × · · · × dn uniform rectangular grid in B. The
collection N1, . . . , Nq is called a numerical Morse decomposition, and the isolating
neighborhoods N1, . . . , Nq are called numerical Morse sets. Note that if Ni touches
the boundary of B for some i then it is not known if Ni is an isolating neighborhood
in the entire phase space X, so caution should be taken when drawing conclusions
from such a construction.

A numerical Morse decomposition can be schematically depicted as a directed
graph whose vertices correspond to the Morse sets and edges indicate possible con-
necting orbits between them. In order to simplify such a representation, one can plot
the transitive reduction of this graph, as was done in the presentation of the results
at [32].

The Conley index, introduced by Conley [8] for flows, and generalized, e.g., by
Mrozek [27] and Szymczak [35] to discrete semidynamical systems induced by con-
tinuous maps, is a topological invariant that provides information about isolated
invariant sets. Its homological version is algorithmically computable (to certain ex-
tent) from an isolating neighborhood and an outer estimate of the map, like those
computed by the method being described. This index takes into account the exit set
of an isolating neighborhood N , that is, the part of the forward image of N that
sticks out of N , and thus reflects the stability of what N contains.

The knowledge of the Conley index of an isolating neighborhood N allows to
draw conclusions on the invariant part of N . In particular, if the index of N is
nontrivial then InvN 6= ∅. The index can also be used to prove the existence of
periodic orbits or more complicated dynamics.

For the purpose of this paper, the Conley index and the relation of the forward
image of N is used in order to classify each computed isolating neighborhood N on
the basis of stability. We say that an isolating neighborhood N is attracting if the
forward image of N is entirely contained in N . One can prove that then N contains
a local attractor, which justifies this terminology. Otherwise, if the forward image of
N is not fully contained in N , we say that N is unstable. If N has the Conley index
of a hyperbolic fixed point with d-dimensional unstable manifold then we say that
N is of the type of the corresponding point. For a typical system, it is likely that N
indeed contains an equilibrium of the expected stability, but—since the Conley index
is a purely topological tool and does not provide information about derivatives—the
dynamics in N may turn out to be much more complicated than seen from outside
(that is, from the perspective of the isolating neighborhood). If N ⊂ Rn is of the
type of a fixed point with n-dimensional unstable manifold then we say that N is
repelling.

Since detailed introduction to the Conley index is beyond the scope of this paper
and requires certain knowledge of algebraic topology, we refer the reader to [8, 27, 35]
for more details on the Conley index, and to [17, 25, 34] and references therein for
discussion of some technical aspects of the method for the computation of this index
implemented in the software used in this paper.

5.2 Justification of the Method for ODEs

In order to apply the method for automatic analysis of global dynamics to a continuous-
time dynamical system (a flow) induced by an ODE, it is natural to consider a time-τ
map for some fixed τ > 0, and to conduct the computations for the discrete-time dy-
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namical system induced by this map. The following theorem justifies this approach,
as it shows that the results obtained from the computations conducted for the time-τ
map are valid for the flow, too.

Theorem 5.1. Let ϕ be a flow on Rn. Let τ > 0. Let B ⊂ Rn be an isolating
neighborhood with respect to ϕτ . Assume that N1, . . . , Nk ⊂ B are some isolating
neighborhoods for ϕτ , with pairwise disjoint interiors. Assume that M := {Mi :=
InvNi | i = 1, . . . , k} is a Morse decomposition of Inv(B,ϕτ ) with respect to ϕτ .
Then N1, . . . , Nk are isolating neighborhoods for ϕ, and M is a Morse decomposition
of Inv(B,ϕ) with respect to ϕ. Moreover, if there exists a connecting orbit in B for
ϕ between some of the Morse sets then there exists a connecting orbit in B for ϕτ
between the same Morse sets.

Note that in this theorem there is no one-to-one correspondence between objects
computed for the time-τ map and the flow, it only says about one direction of
implication. In particular, an isolating neigborhood for the flow need not be an
isolating neighborhood for the time-τ map. Moreover, there might exist a connecting
orbit for ϕτ in B with no corresponding connecting orbit for ϕ in B.

Before proving this theorem, let us recall a few relevant results.

Proposition 5.2 (see [28, Theorem 1] for an even more general version). For a flow
ϕ on Rn, the following conditions are equivalent:

(1) S is an isolated invariant set with respect to ϕ,
(2) S is an isolated invariant set with respect to ϕτ for all τ > 0,
(3) S is an isolated invariant set with respect to ϕτ for some τ > 0.

Proposition 5.3 (see [28, Corollary]). The cohomological Conley index of an iso-
lated invariant set of a flow ϕ coincides with the corresponding index with respect to
the discrete dynamical system ϕτ for any τ > 0.

Proposition 5.4 (see [30, Lemma 6] or [28, the last paragraph of the proof of
Theorem 1, p. 309]). Let τ > 0. If N is an isolating neighborhood with respect to a
time-discretization ϕτ of a flow ϕ then N is an isolating neighborhood with respect
to the flow ϕ and Inv(N,ϕτ ) = Inv(N,ϕ).

Proof of Theorem 5.1. By Proposition 5.4, B is an isolating neighborhood for the
flow ϕ and Inv(B,ϕ) = Inv(B,ϕτ ). Also all Ni are isolating neighborhoods for
the flow ϕ, and Mi = Inv(Ni, ϕ). Either by Proposition 5.2 or by the fact that
Mi = Inv(Ni, ϕ) and thus Mi ⊂ intNi, all the Mi are isolated invariant sets with
respect to the flow ϕ. Define N :=

⋃k
i=1Ni. Since Inv(B \N,ϕτ ) = ∅, it follows from

Proposition 5.4 that also Inv(B \N,ϕ) = ∅.
Consider a trajectory with respect to the flow ϕ that connects Mi and Mj in

B, for some i, j ∈ {1, . . . , k}. (Since B is an isolating neighborhood, this trajectory
is actually contained in intB.) Then a time-τ discretization of this trajectory is an
orbit with respect to ϕτ that connectsMi andMj. As a consequence, all the relations
induced by the flow on M must also exist in the Morse ordering of M with respect
to ϕτ . It follows that the flow-induced relations on M can be extended to a partial
order on M by transitivity. Therefore, M is a Morse decomposition of Inv(B,ϕ) with
respect to the flow ϕ.
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Regarding some technicalities, we remark that by Proposition 5.3, the Conley
indices with respect to the flow ϕ can be instantly obtained from those computed
when considering ϕτ . Unfortunately, the Conley index cannot be computed in cer-
tain cases, which we discuss further in Section 5.4. Moreover, we may not know if
the chosen set B is indeed an isolating neighborhood (and in fact it is not in our
computations). Therefore, one can only be sure that Ni ⊂ B is an isolating neigh-
borhood if actually Ni ⊂ intB. In fact, this problem is one of the reasons for why
the Conley index could not be computed for the neighborhoods of some equilibria,
mainly for the origin.

Choosing an optimal value of τ > 0 is not a trivial task. In fact, in our approach,
we use a heuristic method which chooses a supposedly good τ > 0 by trial and error:
τ is initially chosen quite arbitrarily, and then increased if possible or decreased if it
yields too high overestimates in the computation of outer enclosures of the images
of grid elements by ϕτ .

5.3 Application of the method to the model (T)

The input to the rigorous set-oriented numerical method applied to the system (T)
consists of the data listed below. All the real numbers below should be understood
as their double-precision binary floating-point approximations.

(I1) The four-dimensional ODE defined by (T), in which we fix the following
parameters: K := 100, µ := 0.1, γ := 12, θ := 0.5, σ := 0.2, φ := 16.

(I2) The ranges of the varying parameters α ∈ [0, 0.2] and β ∈ [0.48, 0.53]; that
is, P := [0, 0.2]× [0.48, 0.53].

(I3) The phase space bounding box that contains all the asymptotic dynamics of
our interest: B := [0, 100]4. In our case, this box contains the entire feasible phase
space X for the model; see (6).

(I4) The resolutions in the parameter space and in the phase space. We subdivide
the parameter space P uniformly into 80 × 200 boxes, and the phase space B into
29 = 512 boxes in each direction. The resolutions were set high enough so that the
nine equilibria discussed earlier are clearly visible (see Propositions 3.9 and 3.14),
and the bifurcations shown in Figure 2 can also be followed.

In addition to this initial data, there are also several technical parameters, such
as a suggestion for τ , which we do not discuss here. All of these technicalities can
be easily found in the software available at [32].

The computations can be run at a computer cluster in a convenient way, using
a flexible dynamic parallelization scheme introduced in [31], which is built into the
software.

The output of the computations consists of the following information:
(O1) Classes of parameters for which the qualitative global dynamics is equiv-

alent. These classes are given as subsets of P , built of the boxes into which P was
subdivided.

(O2) For each parameter box, selected information about the computed numeri-
cal Morse decomposition: the number of the sets, their sizes (in terms of the number
of boxes), their Conley indices (whenever it was possible to compute them), and
information on the detected possible connecting orbits.

(O3) A projection onto I1 and I2 of the phase space portrait of the sets of which
the numerical Morse decomposition is composed. (This form of output is normally
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optional, as the amount of the data can be overwhelming.)
Illustration and discussion of the obtained results of the computations are gath-

ered in the next section.

5.4 Results of the computations and discussion

←(a)
(b)

←(c)

(d)

(e)
(f)

(g)

(h)
(i)

(j)
(k) (l)

(m)

α

β

R0 = Rc

R0 = 1

0 0.20.1

0.48

0.49

0.50

0.51

0.52

0.53

Figure 7: Continuation diagram for the system (T) computed as described in Sec-
tion 5.3. Classes of parameters for which the dynamics is equivalent are indicated in
solid colors. Major continuation classes are labeled, and the global dynamics found
in each of them is discussed in the text and shown in Figures 8 and 9.

In Figure 7, the continuation diagram computed for the parameters under con-
sideration is shown. Each continuation class consisting of more than one element is
indicated in some solid color, with colors repeated for small classes that are at some
distance from each other. Thirteen major classes are given labels (a), (b), . . ., (m)
and are briefly discussed below. The reader is invited to explore the details at the
interactive presentation provided at the website [32].

In Figure 8, projections of the phase space portraits of the computed numerical
Morse decompositions to the coordinates I1 and I2 are shown for a sample parameter
box taken from each of the first 12 classes. In order to save space, the phase space
portrait is not shown for Class (m), because it is very simple: A single isolating
neighborhood of the origin was found there and it is an attractor.

The constructed isolating neighborhoods capture all the chain recurrent dynam-
ics found in B. In particular, these sets contain all the equilibria. If some equilibria
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Figure 8: Sample phase space portraits of numerical Morse decompositions com-
puted for selected parameter boxes chosen from the thirteen major continuation
classes labeled in Figure 7. In Class (m), which is not shown here, a single isolating
neighborhood containing the origin was constructed. Note that the size of the neigh-
borhood of the origin (which is an equilibrium for all the parameters) is so small in
all the cases except for (a) and (b) that it is barely visible in the pictures.
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Figure 9: Conley-Morse diagrams for the sample phase space portraits of numerical
Morse decompositions illustrated in Figure 8. The information at each vertex of each
graph consists of the consecutive number of the Morse set, its size in terms of the
number of boxes, and the Conley index (none in the case of the trivial index). The
consecutive numbers of the numerical Morse sets correspond to the following colors
in the phase space portraits shown in Figure 8: black, blue, red, green, cyan, pink,
violet, orange, dark green.
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are close to each other then they often cannot be separated at the resolution at which
the computations were carried out, and then they share a neighborhood. Moreover, if
the hyperbolicity (contraction, expansion) in the vicinity of an equilibrium is strong
then the constructed neighborhood is typically very small. However, if the dynamics
slows down then the constructed isolating neighborhoods tend to be larger. Since
these are outer estimates for components of chain recurrent dynamics, there are
combinatorial trajectories that traverse the entire neighborhood (transitivity). In
particular, in an actual system that is modeled, one might expect to see trajectories
that run within the entire region of an isolating neighborhood yet correspond to the
steady state. Noise and small perturbations pull these trajectories away from the
steady state, and its weak stability allows for that.

In Figure 9, schematic description of global dynamics found for the cases shown
in Figure 8 is provided. In each of the directed graphs, the nodes correspond to
the isolating neighborhoods that encompass all the chain recurrent dynamics in B,
and the paths in these graphs indicate possible connecting orbits in the system. At
each node, the consecutive number of the corresponding isolating neighborhood is
given. These neighborhoods are numbered in the order in which they were actually
computed by the software. The size of each neighborhood in terms of the number of
boxes is also provided. The homological Conley index is shown whenever the software
was able to compute it and the index is nontrivial. Most typical reasons for failures
include proximity of the boundary of B, and thus lack of isolation, or excessive
size of the constructed index pair (over 10,000 boxes), which would compromise the
efficiency of the computations and thus the computation of the index was skipped
in such cases. If the index was computed then the relative homology of the index
pair is given, and the maps at the non-trivial homology levels are indicated on
homology generators in a compact way by providing the image of each generator
(represented by its consecutive number, starting with 1) as a linear combination of
the generators. For example, “Map 2: #1 = 1” means that at homology level 2, the
image of homology generator no. 1 equals this generator (that is, the map is the
identity). No information about the index, like in the two nodes of the graph in
Class (a), indicates the trivial index.

The information shown in Figure 9 complements Figure 8 and should be ana-
lyzed together. The nine isolating neighborhoods found in Class (d) correspond to
the nine equilibria whose existence was shown in Proposition 3.14. Indeed, the Con-
ley indices in Figure 9(d) agree with their types of stability: There are four attractors
(no. 3, 6, 7 and 8), four sets of the type of a saddle critical point with 1-dimensional
unstable manifold, and one set of the type of a critical point with 2-dimensional un-
stable manifold. With the increase in the parameter α, there are different possible
scenarios of bifurcations that yield to Class (g), in which the chain recurrent dy-
namics is restricted to three isolating neighborhoods along the diagonal. Traversing
through Classes (e) and (f) corresponds to the scenario depicted in Figure 2(c)(d),
and traversing through Classes (h) and (j) corresponds to the scenario depicted in
Figure 2(a)(b). Note that the configuration encountered in Class (i) corresponds to
an intermediate situation in between these two sequences of bifurcations.

As predicted by the theory, in Class (b), that is, for high values of β, which
correspond to high values of R0, the chain recurrent dynamics is restricted to two
isolating neighborhoods located along the diagonal: one including the DFE, whose
Conley index could not be computed due to problems with isolation (the DFE is
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unstable), and the other one corresponding to the endemic equilibrium, which is
asymptotically stable. Similarly, in Class (m), that is, for low values of β, which
correspond to low values of R0, there is exactly one chain recurrent set in B, which
corresponds to the DFE, which is asymptotically stable in that case.

Several numerical artifacts, which are in fact features of the method that was
applied, can be easily noticed in the results of the computations. In particular,
several numerical Morse sets with trivial indices were found in Classes (a), (c), (e),
(h), (i), (j), (k). In all the cases, these sets split into pairs of neighborhoods of the
type of an attracting fixed point and a saddle with 1-dimensional unstable manifold.
These isolating neighborhoods are thus indicators of a slow-down in the dynamics,
which is related to the bifurcations taking place for nearby parameter values. It may
also be the case that such neighborhoods in fact contain the two equilibria, but they
cannot be separated due to their proximity.

It is worth to note that while the line R0 = Rc indeed corresponds to the
location at which the Morse decompositions undergo a change that suggests the
bifurcation, it is not the case with the line R0 = 1, which is located well above
the border between Classes (b) and (g). The reason for this discrepancy is that the
different equilibria that participate in the bifurcation get very close together already
for parameters below R0 = 1, and thus they are not separated into distinct isolating
neighborhoods at the resolution at which the computations were carried out. This is
a natural feature of the method applied. Indeed, this discrepancy shows that while
the bifurcation was indeed detected by this method, drawing conclusions regarding
its actual location should be done with caution.

It is interesting to see that except for the isolating neighborhoods that correspond
to the equilibria, no other chain recurrent dynamical structures have been found.
This result proves that for the investigated ranges of parameters, the entire chain
recurrent dynamics in the system restricted to the predefined set B is limited to
the neighborhoods of the equilibria. In particular, there are no periodic solutions or
other chain recurrent dynamical structures in B outside these neighborhoods.

We would like to point out the fact that although the set-oriented computa-
tions provide mathematically rigorous results, some caution must be exercised while
interpreting them. For example, isolated invariant sets that form the Morse decom-
position are contained in the explicitly constructed isolating neighborhoods, and the
type of the set, as seen from the outside, is indicated by the Conley index. However,
as it was already pointed out in Section 5.1, one must be cautious about claiming the
actual stability of fixed points or existence of other invariant sets contained therein.
Secondly, the connections found between the Morse sets at the combinatorial level
(as chain of grid elements) provide an optimistic upper bound on the existing con-
nections. In fact, it is the lack of a specific connection that can be proved using this
method. In order to confirm the existence of a connecting orbit between two given
Morse sets, additional work is necessary. One approach is to apply the Conley index
to larger sets (e.g., two Morse sets and an outer bound for their connecting orbits)
and use topological arguments. Another approach is to use numerics more directly.
For example, the rigorous numerical procedures developed by the CAPD group [7]
are very appropriate for this purpose (see e.g. [41, 42]). Other authors have also
developed relevant methods (e.g. [29]).

An intriguing question arises as to whether these numerical computations provide
complete information about the dynamics. Indeed, some chain recurrent sets may
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have not been separated from each other, because the resolution was too coarse to
see this. However, the resolutions that we chose in the set of parameters and in
the phase space seem to be very fine in comparison to how these quantities can be
controlled or determined for a real system, which bears some amounts of uncertainty
and noise. Therefore, we speculate that any additional details, which might possibly
be revealed at finer resolutions, would be in fact of negligible importance for the
actual applications. In particular, the shift in the parameter β in detecting the
bifurcation at R0 = 1 (see Figure 7) is natural, and in fact one may argue that
the numerical result is “more correct” than the analytic one: If different equilibria
are very close together then from the practical point of view they should be treated
as a single state of the system. The reader is referred to [22] for a more in-depth
discussion of this issue and for a suggestion of a theory that deals with perception
of dynamics at finite resolution.

6 Conclusions
In this paper, a simple vaccination model was proposed for the spread of an infectious
disease in a population of individuals who travel between two regions. We considered
the three dimensional system (1) as an epidemic building block in each region, and
then we built our model by adding linear terms to the equations to reflect the inflow
and outflow of individuals due to travel.

We calculated the basic reproduction number R0 for the two-patch model, where
we allowed corresponding parameters in the two regions to differ. After deriving sta-
bility results for the unique DFE in terms of R0, we moved to the case of symmetric
regions, to focus our attention on the impact of individuals’ mobility on the steady
states. In the case when the two regions are disconnected, we found out that there ex-
ists a unique componentwise positive equilibrium, and two partially endemic steady
states (i.e., the disease is present in one region and is absent in the other one) for
R0 > 1. Moreover, a critical value Rc was defined such that under certain con-
ditions on the model parameters, the model for disconnected regions admits four
fully endemic (componentwise positive) and four partially endemic equilibria for
Rc < R0 < 1. Stability of steady states was also described.

All partially endemic equilibria disappear when traveling between the regions is
introduced into the system. For R0 > 1, we showed that the model for connected
regions admits a single non-trivial steady state, which is stable and independent of
the travel rate α. On the other hand, the existence of multiple endemic equilibria
is possible for R0 < 1; a necessary condition of the model parameters was given
such that there are non-trivial steady states when Rc < R0 < 1. In particular, the
stable DFE can coexist with three stable and five unstable positive equilibria for
some values of R0 on the interval (Rc, 1), if the condition for multiple steady states
holds true. Two positive equilibria, bifurcating from a saddle-node bifurcation point
at R0 = Rc, exist for all travel rates, while the other six endemic steady states were
proven to be sensitive to the travel volume, and disappear for larger values of α.
Numerical simulations were conducted to illustrate the rich bifurcation structure in
the model. Using rigorous set-oriented computations, we were also able to compute
a comprehensive overview of global dynamics for selected ranges of parameters. The
overall image of the global dynamics agrees with the analytic results and with the
numerical simulations restricted to the equilibria, and proves that outside small
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neighborhoods of the equilibria, no other chain recurrent dynamics exists in the
system.

We remark that in the case R0 > 1, two steady states out of the four equilibria
of the disconnected system cease to exist with the introduction of traveling between
the regions. In the system of connected regions, only one non-trivial steady state—a
stable, fully endemic equilibrium—is preserved in addition to the unstable DFE,
whereas all partially endemic equilibria disappear. This phenomenon was noted in
numerous metapopulation models in the literature (see, for instance, Arino [2], Arino
and van den Driessche [3]). Its epidemiological implication is that the reproduction
number, as a single quantity, plays the role of an epidemic threshold in all regions, in
the sense that disease eradication in a patch is impossible as long as the infection is
present in the other region and R0 > 1. However, bringing R0 below 1 might not be
sufficient (though, is always necessary) for successful epidemic control: the presence
of stable non-trivial equilibria implies that in some cases the disease can sustain
itself even if R0 < 1. Based on rigorous computations on the global dynamics, the
stable endemic equilibrium attracts every solution if R0 > 1. Since this steady state
is independent of the travel rate, we conclude that spatial dispersal of individuals
won’t decrease the epidemic size when the reproduction number is larger than 1. On
the other hand, we showed that for Rc < R0 < 1 a large number of steady states
can exist in the model, and we illustrated how increasing travel volumes creates
or destroys these equilibria. This rich structure of steady states goes hand in hand
with some complicated dynamical behavior, which makes predicting final epidemic
outcomes particularly difficult. Albeit the DFE is locally stable, its attracting region
is complicated to characterize. For this reason, prevention strategies should focus on
decreasing the reproduction number below Rc, that ensures disease eradication.
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