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In the last three decades, various discrete models of a single neuron were
introduced, aimed at reflecting the dynamics of neural processes. Unfor-
tunately, analytical methods offer limited insight into the nature of some
phenomena encountered by such models. In this paper, we study the
classical multi-parameter Chialvo model by means of a novel topological
method that uses set-oriented rigorous numerics combined with computa-
tional topology. We enrich the existing tools with a new approach that we
call Finite Resolution Recurrence. We obtain a comprehensive picture of
global dynamics of the model, and we reveal its bifurcation structure. We
combine the recurrence analysis with machine learning methods in order
to detect parameter ranges that yield chaotic behavior.

1. Introduction

With the increasing capabilities of contemporary computers, it is possible to apply
more and more computationally demanding methods to the analysis of dynamical
systems. Such methods may provide comprehensive overview of the dynamics on the
one hand, and thorough insight into specific features of the system on the other hand.

In this paper, we discuss an application of a computationally advanced method for
the analysis of global dynamics of a system with many parameters. The method was
originally introduced in [1], and now we enhance it by introducing Finite Resolution
Recurrence (FRR) analysis, as explained in Section 4.1. We apply this method to
the two-dimensional discrete-time semi-dynamical system introduced by Chialvo in
[5] for modeling a single neuron. We describe this model in Section 2.

1.1. Goals and main results. The goals of the paper are twofold. First, we aim at
obtaining specific results on the Chialvo dynamical model of a neuron that might be
of interest to computational neuroscientists. Second, with this motivation in mind,
we develop new numerical-topological methods that can be applied to a wide variety
of dynamical systems; these methods are thus of importance to the community of
applied scientists interested in computational analysis of mathematical models. The
remainder of the Introduction section contains an overview of both achievements.

Our first major result regarding the Chialvo model is that we give complete descrip-
tion of bifurcation patterns within a wide range of parameters (see Figure 5), together
with the information on the dynamics inside each continuation class, expressed by
means of the Conley Index and Morse decomposition (as explained in Section 3.2).
We also determine the changes in dynamics caused by changes in parameter values.
These results are broadly discussed in Section 3.4 and summarized in Figure 8, and
may be perceived as our main finding about the Chialvo model. Let us remark that
this part uses interval arithmetic in the computations and the obtained results are
rigorous (computer-assisted proof).

The second main result of the paper regarding the Chialvo model is the indication
of possible ranges of parameters in which one may expect chaotic dynamics (and
other ranges in which one should not expect it). This is achieved by introducing a
new method that we call Finite Resolution Recurrence analysis; see Section 4. We use
it for classifying the type of dynamics with the help of machine learning (DBSCAN
clustering) in Section 5. The result of this part of our research is summarized in
Figures 28 and 31 in which we identify six main types of dynamics (including chaos)
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 3

and the corresponding parameter ranges. Although computation of Finite Resolution
Recurrence is rigorous and one can use it to prove certain features of the dynamical
system (as we explain in Section 4.1), in this part of the paper we use it in a heuristic
way to draw non-rigorous yet meaningful conclusions. Our other heuristic result is
the identification of regions of parameters in which spiking-bursting oscillations are
likely to appear; this result is discussed in Section 3.5.

Our numerical-topological methods are briefly introduced in Section 1.2, and some
of their advantages over the “classical” approach are gathered in Section 1.3. We
emphasize the fact that our methods are universal, i.e., the scope of their applicability
is not limited to the Chialvo map, but they can also be applied to various other kinds
of dynamical systems.

1.2. Overview of our numerical-topological approach. Our approach uses rig-
orous numerical methods and a topological approach based on the Conley index and
Morse decompositions, and provides mathematically validated results concerning the
qualitative dynamics of the system. The main idea is to cover the phase space (a sub-
set of Rn) by means of a rectangular grid (n-dimensional rectangular boxes), and to
use interval arithmetic to compute an outer estimate of the map on the grid elements.
This construction gives rise to a directed graph, and fast graph algorithms allow one
to enclose all the recurrent dynamics in bounded subsets, further called Morse sets,
built of the grid elements, so that the dynamics outside the collection of these sub-
sets is gradient-like. The entire range of parameters under consideration is split into
classes in such a way that parameters within one class yield equivalent dynamics. We
outline this method in Sections 3.1–3.2. We show its practical application to obtain a
comprehensive overview of the different types of dynamics that appear in the Chialvo
model in Sections 3.3–3.4.

Since existence of chaotic dynamics implies recurrence in large areas of the phase
space (existence of large “strange attractors”), construction of an outer estimate for
the chain recurrent set results in this case in just one large isolating neighborhood,
and therefore the approach based on constructing a Morse decomposition provides
very little information on the actual dynamics. In order to address this problem,
we introduce new algorithmic methods for the analysis of the directed graph that
represents the map in order to get insight into the dynamics inside this kind of a
large Morse set. We consider this a non-trivial extension of the method described in
[1] that provides new and important information on the dynamics. In particular, we
introduce the notion of Finite Resolution Recurrence (FRR for short) in Section 4.1,
and we show its application to a few cases in the Chialvo model in Section 4.2. We
then propose (in Sections 4.3–4.4) to analyze the variation of FRR values inside the
large Morse set, and we conduct comprehensive analysis of Normalized FRR Variation
(NFRRV for short) in Section 4.5.

Finally, in Section 5, we develop certain heuristic indicators of chaotic dynamics
that are based on the FRR analysis and apply them to the Chialvo model. The
results in this section are no longer rigorous; these are heuristics supported by machine
learning and numerical evidence.

One could summarize the main ideas of our method for comprehensive analysis of
a dynamical system at finite resolution in the following way (see Figure 1):
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Continuation Diagram

Computer
program

Conley-Morse Graph 

for selected parameters

Phase Space Portrait 

for selected parameters
Recurrence Diagram 

for chosen Morse set

EQUATIONS
of the system  PARAMETERS  PHASE SPACE 

Figure 1. Schematic illustration of the main steps of our method.
The equations of the system, together with a chosen range of parame-
ters Λ ⊂ Rm and a specification of the phase space (B ⊂ Rn) constitute
input to a computer program: an implementation of the method de-
scribed in Sections 3.1, 3.2, 4.1 and Appendix A. The computer program
can be treated as a “black box” that produces desired information about
the system on its output. The first thing to obtain is a Continuation
Diagram that partitions the parameter space Λ into classes correspond-
ing to different types of dynamics. Next, for each particular value of
the parameters, a Conley-Morse Graph and the corresponding Phase
Space Portrait are obtained. This provides information on invariant
sets. Finally, the dynamics within individual Morse sets can be exam-
ined in more detail by means of Recurrence Diagrams that allow one
to deduce possible existence of periodic attractors and chaotic dynam-
ics.

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
29

85
9



TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 5

(a) We split the dynamics into chain recurrent sets (Morse sets) and the non-
recurrent set (gradient-like dynamics).

(b) We obtain information about the Morse sets by looking at their boundary
(computing their Conley indices); in particular, a nontrivial Conley index
implies the existence of a non-empty isolated invariant subset of the Morse
set.

(c) Computation of (a) and (b) involves rigorous numerical methods (based on
interval arithmetic) and provides mathematically reliable results (computer-
assisted proof).

(d) We study the dynamics inside the Morse sets using a new method: Finite
Resolution Recurrence analysis (also providing rigorous results).

(e) We conduct (a)–(d) for a grid of parameters of the system varying in some
bounded ranges, and we gather the information in order to classify the types
of dynamics encountered (rigorous results), and search for spiking-bursting
oscillations and chaotic dynamics (heuristic non-rigorous results).

In particular, by applying our approach to the classical Chialvo model (1) we are able
to obtain precise and comprehensive description of the dynamics for a large range of
parameters considered in [5].

1.3. Advantages of our method in comparison to “classical” approach. As
it will be made clear in the sequel, the set-oriented topological method that we apply
has several advantages over purely analytical methods, and over plain numerical sim-
ulations as well. One could argue that analytical methods typically focus on finding
equilibria of the system and determining their stability. On the other hand, numerical
simulations are usually limited to iterating individual trajectories and thus their abil-
ity is limited to finding stable invariant sets only, not to mention their vulnerability
to round-off or approximation errors. In contrast to this, our approach detects all
kinds of recurrent dynamics (also unstable) in a given region of the phase space, and
provides mathematically reliable results.

It is also worth pointing out that introducing advanced methods for investigating
invariant sets and their structure is especially desirable in discrete-time systems al-
ready in dimension 2, such as the Chialvo model. The reason is that such systems
are much more demanding than their ODE “counterparts.” For example, in dimen-
sion 2, the information on the invariant (limit) sets in continuous-time systems can
be concluded from the Poincaré-Bendixson Theorem, the shape of stable and unsta-
ble manifolds of saddle fixed points, and other elementary considerations. Indeed, as
Chialvo noticed in [5], “Trajectories associated with iterated maps are sets of discrete
points, and not continuous curves as in ODE. In two-dimensional ODE, orbits or
stable and unstable manifolds partition the phase space in distinct compact subsets
with their specific attractors. Structure of the stable sets might be more complicated
for 2D iterated maps.”

On the other hand, in the analysis of one-dimensional discrete models, one can
benefit from the theory of circle maps or the theory of interval maps; both have un-
dergone rapid development in recent decades. In particular, the theory of S-unimodal
maps can be successfully applied to obtain rigorous results for the one-dimensional
Chialvo model [21]. Unfortunately, in the discrete setting, increasing the dimension
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6 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

from one to two makes the analysis considerably harder, as no such powerful analyti-
cal tools exist for discrete models in two dimensions. Hence there is a strong demand
for reliable computational techniques in studying (discrete) higher dimensional sys-
tems. This demand has been one of our main motivations for conducting the research
described in this paper.

1.4. Structure of the paper. The core of the paper is split into three sections.
Introduction of theoretical basis and description of computational methods is directly
followed by application to the Chialvo model.

In Section 2, we describe a 2-dimensional discrete-time dynamical system intro-
duced by Chialvo for modeling an individual neuron.

In Section 3, we explain the set-oriented topological method for comprehensive
analysis of a dynamical system, and we apply it to the Chialvo model. In particular,
we explain the various kinds of global dynamics that we encountered in the phase
space across the analyzed ranges of parameters, we describe possible bifurcations
found in the system, and we give heuristics on where one could search for spiking-
bursting oscillations and chaotic dynamics.

In Section 4, we introduce the Finite Resolution Recurrence (FRR) and its variation
(FRRV), also normalized (NFRRV) as new mathematical tools for deep analysis of
recurrent dynamics at limited resolution. We show the results of applying this method
to the Chialvo model.

Finally, in Section 5, we use FRR as a tool in classification of dynamics, and we
demonstrate its usefulness as an indicator of the existence of chaotic dynamics.

2. Model

The following model of a single neuron was proposed by D. Chialvo in [5]:

(1)
{
xn+1 = x2

n exp(yn − xn) + k,
yn+1 = ayn − bxn + c.

In this model, x stands for the membrane (voltage) potential of a neuron. It is the
most important dynamical variable in all neuron models. However, in order to model
neuron kinetics in a more realistic way than by means of a single variable, at least one
other dynamical variable must be included in the model. Therefore, the system (1)
contains also y that acts as a recovery-like variable. There are four real parameters
in this model: k which can be interpreted as an additive perturbation or a current
input the neuron is receiving, a > 0 which is the time constant of neuron’s recovery,
the activation (voltage) dependence of the recovery process b > 0, and the offset c.

This discrete model, in which xn and yn are values of the voltage and the recovery
variable at the consecutive time units n, belongs to the class of so-called map-based
models. Such models have received a lot of attention recently, and include the famous
Rulkov models [32, 33, 34] and many others (see also review articles [9] and [13]). For
completeness, we also mention the fact that neurons can be modeled by continuous
dynamical systems, i.e., ordinary differential equations, dating back to the pioneering
work of Hodgkin and Huxley [12], or by hybrid systems (see e.g. [3, 14, 30, 31, 35, 38]).
Models taking into account the propagation of the voltage through synapses or models
of neural networks often incorporate PDEs and stochastic processes (see e.g. [4, 37]).
Although some might consider map-based models too simplified from the biological
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 7

point of view, their biological relevance in fact can be sometimes satisfactory. Their
important advantage is that they are often computationally plausible as components
of larger systems. Due to the tremendous complexity of real neuronal systems, map-
based models appeared as models that are simple enough to be dealt with, yet able
to capture the most relevant properties of the cell. Map-based models can sometimes
be seen as discretizations of ODE-based models.

It seems that the Chialvo model (1) is not a direct discretization of any of the
popular ODE models. However, as noticed by Chialvo himself (see [5]), the shape of
nullclines reminds that of some two-dimensional ODE excitable systems. Moreover,
the equation (1) fulfills the most common general form of map-based models of a
neuron (compare with [13]):

(2)
 x(t+ 1) = F

(
x(t), k ± y(t)

)
,

y(t+ 1) = y(t)∓ ε
(
x(t)− qy(t)− σ

)
.

Before we proceed with our analyses, let us briefly summarize main properties of
the dynamics of (1) that have already been described in the literature. Note that,
in general, the overall analysis of the phase plane dynamics for the model (1) has
not been conducted. There are, however, valuable observations for some ranges of
parameters supported by numerical simulations.

In the paper [5], in which this model was introduced, Chialvo discusses only the
case k = 0, and then k of small positive value with two prescribed choices of the
other parameters. For k = 0, the point (xf 0, yf 0) := (0, c/(1 − a)) is always a stable
(attracting) fixed point of the system (since the corresponding eigenvalues are 0 and
a < 1). For k 6= 0, Chialvo [5] treats only the case when the phase portrait has exactly
one equilibrium point (which happens, e.g., for a = 0.89, b = 0.6 and c = 0.28) and
treats k as the bifurcation parameter, while a, b and c are usually kept constant. For
this particular choice of parameter values and small values of k, the unique fixed point
is globally attracting and this parameter regime is referred to as quiescent-excitable
regime. For larger values of k (e.g., for k = 0.1), the unique fixed point is no longer
stable, and oscillatory solutions might appear. This phenomenologically corresponds
to the bifurcation from quiescent-excitable to oscillatory solution. When the value of
k is increased a bit more, chaotic-like behavior was observed in [5] for some values
of the parameters. For example, when b is decreased from 0.6 to 0.18, and a = 0.89,
c = 0.28, k = 0.03 then instead of periodic-like oscillations the solution displays
chaotic bursting oscillations with large spikes often followed by a few oscillations of
smaller amplitude, resembling so-called mixed-mode oscillations (see Figure 10 in [5]).

The system (1) can have up to three fixed points and their existence and stability as
well as bifurcations were studied analytically in [15]. Numerical simulations described
in another work [40] suggest the existence of an interesting structure in the (a, b)-
parameter space (with c = 0.28 and k = 0.04 fixed), including comb-shaped periodic
regions (corresponding to period-incrementing bifurcations), Arnold tongue structures
(due to the period-doubling bifurcations) and shrimp-shaped structures immersed in
large chaotic regions.

Let us also mention the fact that the recent work [21] studies in detail the dynamics
of the reduced Chialvo model, i.e., the evaluation of the membrane voltage given by
the first equation in (1), with yn = const treated as a parameter. These purely
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8 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

analytical studies take advantage of the fact that the one-dimensional map Fy(x) =
x2 exp(y − x) + k of the x-variable, restricted to the invariant interval of interest,
is unimodal with negative Schwarzian derivative, which makes it possible to use the
well-developed theory of S-unimodal maps.

Despite all these important observations mentioned above, it is clear that the de-
scription of the dynamics of the model (1) in the existing literature is very incomplete.
In our research described in this paper, we aimed at obtaining a better understand-
ing of the two-dimensional model (1) in a reasonable parameter range. We focused
mainly on investigating the set of parameters that covered most of the analyses con-
ducted in [5]. Specifically, we fixed a = 0.89 and c = 0.28, and we made the other
two parameters vary. We first studied the range (b, k) ∈ Λ1 := [0, 1] × [0, 0.2] (see
Appendix B), and based on these results we decided to restrict our attention to its
sub-region Λ2 := [0, 1]×[0.015, 0.030] (see Sections 3.3–3.4 for the detailed results). In
addition to the typical behavior observed in [5], including attracting points, attractor-
repeller pairs consisting of a point and a periodic orbit, and chaotic behavior as well,
we detected many regions with other types of interesting dynamics, especially for very
small values of the parameters b and k.

3. Set-oriented numerical-topological analysis of global dynamics

In this section, we describe the method for computer-assisted analysis of dynamics
in a system with a few parameters, first introduced in [1] for discrete-time dynamical
systems, and further extended in [19] to flows. We also introduce a new method based
on the notion of Finite Resolution Recurrence that provides insight into the dynamics
inside chain recurrent sets. This approach provides a considerable improvement,
because – to the best of our knowledge – in methods based on [1] introduced so far
this kind of analysis that would reveal the internal structure of chain recurrent sets
was never proposed.

The computations are conducted for entire intervals of parameters, and the re-
sults are valid for each individual parameter in the interval. This allows one to
determine the dynamical features for entire parameter ranges if those are subdivided
into smaller subsets. By using interval arithmetic and controlling the rounding of
floating point numbers, the method provides mathematically rigorous results (a.k.a.
computer-assisted proof ).

We first describe the set-oriented rigorous numerical method for the computation
of Morse decomposition of the dynamics on a given phase space across a fixed range
of parameters in Section 3.1. The first paragraph of that section is a concise de-
scription of the process, and the remainder contains all the technical details that can
be skipped on the first reading. The result of applying this method to the Chialvo
model is described in Section 3.3, together with information on how to use the data-
base available for interactive on-line viewing at [27], and the technical details are
gathered in Appendix B. Then in Section 3.2, we explain the topological approach
to the analysis of individual components of recurrent dynamics found in the previous
step (Morse sets) by means of the Conley index. The description is aimed at non-
users of the Conley index theory and provides information necessary to understand
our results discussed in Section 3.4, in which we provide a comprehensive overview of
all the types of dynamics that we found in the Chialvo model. Finally, in Section 3.5,
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 9

we provide a heuristic method for using the results of computations conducted in
Section 3.3 to detect regions of parameters for which spiking-bursting oscillations or
chaotic dynamics might appear.

3.1. Automatic analysis of global dynamics. While numerical simulations based
on computing individual trajectories may provide some insight into the dynamics,
considerably better understanding may be achieved by set-oriented methods in which
entire sets are iterated by the dynamical system. One of the first software packages
that used this approach was GAIO [10]. The first step is to partition the phase
space into a collection of bounded sets with simple structure (such as squares or
cubes), further called grid elements. By considering images of these sets, one can
represent a map that generates a discrete-time dynamical system as a directed graph
on grid elements. Numerical methods based on interval arithmetic provide means
for computing an outer enclosure of the map rigorously and effectively. And here
comes the key idea. Effective graph algorithms applied to such a representation
of the map make it possible to capture all the chain recurrent dynamics contained
in a collection of subsets of the phase space, called Morse sets. In particular, this
construction proves that the dynamics in the remaining part of the phase space is
gradient-like (see also [2, 17]). By determining possible connections between the chain
recurrent components, one constructs so-called Morse decomposition, and the Conley
index [8] provides additional information about the invariant part of the Morse sets.
Finally, the set of all the possible values of parameters within prescribed ranges is
split into subsets of parameters that yield equivalent Morse decompositions related
by continuation, thus called continuation classes.

The remainder of this subsection contains formal definitions of what has just been
explained intuitively in the paragraph above, and can be skipped on the first reading.

Formally, let X be a topological space, and let f : X → X be a continuous map.
S ⊂ X is called an invariant set with respect to f if f(S) = S. The invariant part
of a set N ⊂ X is an invariant set defined as InvN := ⋃{S ⊂ N : f(S) = S}. An
isolating neighborhood is a compact set N whose invariant part is contained in its
interior: InvN ⊂ intN . A set S is called an isolated invariant set if S = InvN for
some isolating neighborhood N .

A Morse decomposition of X with respect to f is a finite collection of disjoint
isolated invariant sets (called Morse sets) S1, . . . , Sp with a strict partial ordering ≺
on the index set {1, . . . , p} such that for every x ∈ X \ (S1 ∪ · · · ∪ Sp) and for every
orbit {γk}k∈Z (that is, a bi-infinite sequence for which f(γk) = γk+1) such that γ0 = x
there exist indices i ≺ j such that γk → Si as k →∞ and γk → Sj as k → −∞.

Since it is not possible, in general, to construct numerically a valid Morse de-
composition of a compact set B ⊂ Rn, we construct isolating neighborhoods of the
Morse sets instead. This is a family of isolating neighborhoods N1, . . . , Np ⊂ B
with a strict partial ordering ≺ on the set of their indices such that the family
{Si := InvNi : i = 1, . . . , p} forms a Morse decomposition of InvB with the or-
dering ≺. The sets Ni, i = 1, . . . , p, will be called numerical Morse sets, and the
collection N1, . . . , Np is then a numerical Morse decomposition.

We visualize a numerical Morse decomposition by means of a directed graph that
corresponds to the transitive reduction of the relation ≺. Vertices in this graph
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10 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

correspond to the numerical Morse sets, and a path from Ni to Nj indicates the
possibility of existence of a connecting orbit between them.

We construct numerical Morse sets as finite unions of small rectangles in Rn whose
vertices form a regular mesh. Specifically, a rectangular set in Rn is a product of
compact intervals. Given a rectangular set

B = [a1, a1 + δ1]× · · · × [an, an + δn] ⊂ Rn

and integer numbers d1, . . . , dn > 0, the set

Gd1,...,dn(B) :=
{

n∏
i=1

[ai + ji
di
δi, ai + ji + 1

di
δi] : ji ∈ {0, . . . , di − 1}, i ∈ {1, . . . , n}

}

is called the d1 × · · · × dn uniform rectangular grid in B. The grid elements are
referred to by the n-tuples (j1, . . . , jn). The n-tuple of integers (d1, . . . , dn) is called
the resolution in B. We shall often write G(B) instead of Gd1,...,dn(B) for short.

Note that in the planar case, a numerical Morse decomposition in B ⊂ R2 can be
visualized as a digital raster image whose pixels correspond to the individual boxes
in each of the numerical Morse sets. For convenience, each numerical Morse set can
be plotted with a different color. Obviously, this kind of visualization should be
accompanied by a graph that shows the ordering ≺.

A multivalued map F : G(B)( G(R), where B ⊂ R ⊂ Rn and G(R) is a uniform
rectangular grid containing G(B), is called a representation of a continuous map
f : B → R if the image f(Q) of every grid element Q ∈ G(B) is contained in the
interior of the union of grid elements in F(Q). If |A| denotes the union of all the
grid elements that belong to the set A ⊂ G(R) then this condition can be written as
follows:

(3) f(Q) ⊂ int |F(Q)| for every Q ∈ G(B).

A representation corresponds to a directed graph G = (V,E) whose vertices are
grid elements and directed edges are defined by the mapping F as follows: (P,Q) ∈
E ⇐⇒ Q ∈ F(P ). It is a remarkable fact that the decomposition of G into
strongly connected path components (maximal collections of vertices connected in both
directions by paths of nonzero length) yields a numerical Morse decomposition in B,
provided that Ni ⊂ intB for all the numerical Morse sets Ni; see [1, 2, 17] for
justification.

Now consider a dynamical system that depends on m parameters. Consider a rect-
angular set Λ ∈ Rm of all the m parameter values of interest. Take a uniform rectan-
gular grid Gs1,...,sm(Λ) for some positive integers s1, . . . , sm. Using interval arithmetic,
one can compute a representation FL valid for the maps fλ for all the parameters
λ ∈ L. Then the numerical Morse decomposition computed for FL yields a collection
of isolating neighborhoods of a Morse decomposition for each fλ, where λ ∈ L.

Given two parameter boxes L1, L2 ∈ G(Λ), we use the clutching graph introduced
in [1, §3.2] to check if the numerical Morse sets in the computed two numerical Morse
decompositions are in one-to-one correspondence. If this is the case then continuation
of Morse decompositions has been proved and we consider the dynamics found for the
parameter boxes L1, L2 equivalent. A visualization of the collection of equivalence
classes with respect to this relation is called a continuation diagram.
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 11

3.2. Analysis of dynamics in individual Morse sets using the Conley index.
Informally speaking, the dynamics in the Morse sets could be of three types. In the
first type, all trajectories that enter the set stay there forever in forward time, like
in the examples shown in Figure 2. In the second type, there are some trajectories
that stay in the Morse set in forward time, but there are also some other trajectories
that exit the set. This situation is shown in the examples in Figure 3. Finally, it may
be the case that all trajectories that enter the set will leave it in forward time, and
thus there is no trajectory that stays inside forever. Two such examples are shown in
Figure 4.

Specifically, in order to understand the dynamics in each numerical Morse set Ni
constructed by the method introduced in Section 3.1, we check its stability by com-
puting its forward image by F and analyzing the part that “sticks out:” F(Ni) \ Ni.
We say that Ni is attracting if F(Ni) ⊂ Ni; in fact, one can prove that then |Ni|
contains a non-empty local attractor (cf. Lemma 2 in [23]), which justifies this term.
If F(Ni) 6⊂ Ni then we say that Ni is unstable. We qualify the kind of instability by
computing the Conley index using the approach introduced in [1, 24, 29].

The definition of the Conley index is based on the notion of an index pair. This is
a pair of sets (P1, P2) such that P1 covers an isolating neighborhood, and trajectories
exit this neighborhood through P2; see e.g. [1] for the precise definition. A few typical
Conley indices that appear in our computations are shown in Figures 2 and 3. In
the case of a flow, the homological Conley index is merely the relative homology
of the index pair. However, in the case of a map, one also needs to consider the
homomorhpism induced in homology by the map on the index pair (denoted here by
H∗(IP )), with some reduction applied to it; see e.g. [36] for the details. In order to
simplify the representation of the Conley index for a map, we compute the non-zero
eigenvalues of the index map, which is a weaker but easily computable invariant; see
[1] for more explanations on this approach.

A selection of typical Conley indices is provided in Figures 2 and 3, and two ex-
amples of the trivial Conley index are shown in Figure 4, together with the codes
that we use in Figures 8 and 9. In particular, it is important to note that this index
has a specific form for a hyperbolic fixed point or a hyperbolic periodic orbit with a
d-dimensional unstable manifold. If we encounter one of these specific forms of the
index then we say that Ni is of type of the corresponding periodic point or orbit.
Although in such a case |Ni| indeed contains a periodic orbit of the expected period,
it may turn out that the stability of that orbit is different, and the dynamics inside
the numerical Morse set might be more complicated than it appears from the outside.
In particular, if |Ni| ⊂ Rn and Ni is of type of a fixed point or a periodic orbit in Rn

with n-dimensional unstable manifold then we say that Ni is repelling. It is a crucial
fact that if the Conley index of Ni is nontrivial then Inv |Ni| 6= ∅.
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12 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

P1
(a) An attracting fixed point

P1 is the disk shown in blue, P2 = ∅
H∗(P1, P2) ∼= (Z)
index map at level 0: g1 7→ g1
eigenvalues: {1} at level 0
example map: f(x, y) = (x/2, y/2)
code: H=(Z,0,0) E=(1)

f

f
P1

P1

(b) An attracting period-2 orbit
P1 is the union of the two disks shown in blue, P2 = ∅
H∗(P1, P2) ∼= (Z2)
index map at level 0: g1 7→ g2, g2 7→ g1
eigenvalues: {−1, 1} at level 0
example map: f(x, y) = (−x(2− |x|), y/2)
attracting periodic orbit for the example map: (±1, 0)
code: H=(Z^2,0,0) E=(-1,1)

P1(c) An attracting invariant circle
P1 is the ring shown in blue, P2 = ∅
H∗(P1, P2) ∼= (Z,Z)
index map at level 0: g1 7→ g1; at level 1: g1 7→ g1
eigenvalues: {1} at level 0, {1} at level 1
code: H=(Z,Z,0) E=(1;1)

Figure 2. Typical Conley indices for stable isolated invariant sets
that appear in actual applied dynamical systems. The examples (a)
and (c) may come from a time-t map for a flow (the index map is thus
the identity).
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 13

P1

P2(a) A saddle fixed point (orientation preserving)
P1 is the blue rectangle together with its two sides P2
H∗(P1, P2) ∼= (0,Z)
index map at level 1: g1 7→ g1
eigenvalues: {1} at level 1
example map: f(x, y) = (2x, y/2)
code: H=(0,Z,0) E=(1)

f

f

(b) A saddle fixed point (orientation reversing)
P1 is the violet rectangle with its two sides P2
H∗(P1, P2) ∼= (0,Z)
index map at level 1: g1 7→ −g1
eigenvalues: {−1} at level 1
example map: f(x, y) = (−2x, y/2)
code: H=(0,Z,0) E=(-1)

P1

P2

(c) A repelling fixed point (orientation preserving)
P1 is the blue disk together with its “boundary” P2
H∗(P1, P2) ∼= (0, 0,Z)
index map at level 2: g1 7→ g1
eigenvalues: {1} at level 2
example map: f(x, y) = (2x, 2y)
code: H=(0,0,Z) E=(1)

P1

P2

(d) A repelling invariant circle
P1 is the blue ring together with P2 shown in red
H∗(P1, P2) ∼= (0,Z,Z)
index map at level 1: g1 7→ g1; at level 2: g1 7→ g1
eigenvalues: {1} at level 1, {1} at level 2
code: H=(0,Z,Z) E=(1;1)

Figure 3. Typical Conley indices for unstable isolated invariant sets
that appear in actual applied dynamical systems. The examples (a),
(c), (d) may come from a time-t map for a flow (the index map is thus
the identity). The map in (b) flips the index pair horizontally and
squeezes it vertically.
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14 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

P1

P2(a) A box with trajectories passing through
P1 is the blue rectangle together with its side P2
H∗(P1, P2) ∼= 0
index map: 0
eigenvalues: {0}
example map: f(x, y) = (x− 1, y)
code: H=(0) E=(0)

P1

P2

(b) A ring with trajectories passing through
P1 is the blue ring together with its outer belt P2
H∗(P1, P2) ∼= 0
index map: 0
eigenvalues: {0}
example map: f(x, y) = (2x, 2y)
code: H=(0) E=(0)

Figure 4. Sample index pairs with the trivial Conley index. Note
that the invariant part of P1 \ P2 is empty in both cases.
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 15

3.3. Application of the automatic analysis method to the Chialvo model of
a neuron. By applying the methods introduced in Sections 3.1 and 3.2 to the Chialvo
model of a neuron, explained in Section 2, we obtained the continuation diagram
shown in Figure 5. The computations were restricted to the phase space (x, y) ∈
B := [−0.1, 9]× [−5, 3] and the parameter set (b, k) ∈ Λ2 := [0, 1]× [0.015, 0.030] with
a := 0.89 and c := 0.28 fixed. The 1024× 1024 uniform rectangular grid was applied
in B, and Λ2 ws split into 200 × 75 rectangles of equal size. The technical details
and justification of these choices are gathered in Appendix B. Here we only briefly
mention that these sets were chosen on the basis of the information contained in [5]
and our preliminary computations, including application of the topological-numerical
analysis with a larger set of parameters (b, k) ∈ Λ1 := [0, 1] × [0, 0.2]. The results of
the latter computations are shown in Figure 32 in Appendix B and are also available
on-line at [27].

(a)
(b)

(c)

(d) (e) (f) (g)
(h)

0.0 0.2 0.4 0.6 0.8 1.0
b

0.015

0.020

0.025

0.030

k

Figure 5. Continuation diagram for the Chialvo model with a = 0.89,
c = 0.28, and (b, k) ∈ Λ2 = [0, 1] × [0.015, 0.030] split into the 200 ×
75 uniform rectangular grid. See also Figure 32 in Appendix B for a
corresponding diagram with (b, k) ∈ Λ1 = [0, 1]× [0, 0.2] ⊃ Λ2, in which
one can see that in fact regions (a) and (h) are related by continuation.

The continuation diagram in Figure 5 shows the set of parameters (b, k) ∈ Λ2 =
[0, 1]× [0.015, 0.030] split into 200× 75 rectangular boxes of the same size. Each box
is thus a subset of parameters; for example, the leftmost bottom box corresponds
to (b, k) ∈ [0, 0.005] × [0.015, 0.0152]. Adjacent boxes that are shown in the same
color belong to the same continuation class (rigorously validated, as explained in
Section 3.1). This means that the dynamics for all the parameters in a common
contiguous color area in the diagram is the same from the qualitative point of view,
as perceived at the given resolution 1024×1024 in the phase space. In particular, the
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16 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

number of recurrent components (numerical Morse sets) found for all the parameters
in that area, as well as their stability type (measured by the Conley index) are the
same.

The continuation diagrams shown in Figures 5 and 32 (the latter in Appendix B) are
available in [27] for interactive browsing. Clicking a point in the continuation diagram
launches a page with the phase space portrait of the numerical Morse decomposition
computed for the specific rectangle of parameters, as well as a visualization of the
corresponding Conley-Morse graph. The details shown in the visualization are briefly
explained in Figures 6 and 7.

N0 and N1 N2

N3Colors assigned to
consecutive numerical Morse sets

Figure 6. Sample phase space portrait computed for the Chialvo
model, as shown in the interactive visualization available at [27], with
the gray bounding box added for clarity. The color boxes in the lower
left corner indicate the color coding of consecutive numerical Morse
sets. The numbering starts with 0. Note the barely visible tiny sets N0
(black) and N1 (blue), both located in the left top corner of the figure.
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 17

0: 2
H = (0, Z, 0)

Map 1:
#1 = 1

Eigenvalues 1:
(1).

1: 1
H = (Z, 0, 0)

Map 0:
#1 = 1

Eigenvalues 0:
(1).

2: 738
H = (0, Z, 0)

Map 1:
#1 = -1

Eigenvalues 1:
(-1).

3: 3810
H = (Z^2, 0, 0)

Map 0:
#1 = 2
#2 = 1

Eigenvalues 0:
(-1, 1).

consecutive number of the numerical Morse set
and the number of grid elements in the set

a set without incoming connecting orbits
a set with incoming and outgoing connecting orbits

homology of the index pair

eigenvalues for each nontrivial map

an attractor with proven F(Ni) ⊂ Ni

map at each non-trivial homology level
(each homology generator is denoted
by an integer, starting with 1)

Figure 7. Sample Conley-Morse graph computed for the Chialvo
model, as shown in the interactive visualization available at [27], with
the gray background added for clarity. The information in the boxes
and ovals corresponds to the information shown in Figures 2–4; in par-
ticular, one can determine the stability type of each numerical Morse
set by comparison with those examples. Stable (attracting) numerical
Morse sets are indicated by yellow rectangles (it has been proved that
F(Ni) ⊂ Ni). Numerical Morse sets that have no trajectories coming
from other Morse sets in the decomposition are indicated by green rect-
angles. Pass-through sets (with orbits coming in from other numerical
Morse sets and orbits leaving towards other numerical Morse sets) are
indicated by ovals.

3.4. Types of dynamics and bifurcations found in the system. A comprehen-
sive overview of the types of dynamics that were found in the model can be seen in
Figure 8. For each continuation class, a simplified Conley-Morse graph is shown. An
overview of bifurcations that were detected in the system, on the other hand, is better
visible in Figure 9, where the Conley-Morse graphs were joined by edges whenever
the corresponding parameter regions were adjacent (this adjacency can be seen in
Figures 5 and 8). Let us now discuss the Morse decompositions found in the different
continuation classes shown in Figure 5, and also the bifurcations that were observed.

In Region (a), there is exactly one attracting neighborhood, so the detected dy-
namics is very simple. However, the constructed numerical Morse set is of different
size and shape, depending on the specific part of the region: it is small for lower
values of b, and suddenly increases in size above Region (e), as shown in Figure 10.

When the parameter b is increased to move from Region (a) to Region (b), the
internal structure of the large isolating neighborhood is revealed, and in Region (b)
one can see it split into an attractor–repeller pair: a small repeller (308 boxes) sur-
rounded by a circle-shaped attractor (almost 31,000 boxes); see Figure 11. The Morse
graph shows the Conley indices computed for the numerical Morse sets. The exit set
of the small set surrounds it: the relative homology is like for the pointed sphere,
with the identity index map. The exit set of the large set is empty, and the index
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18 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

(a)

H=(Z,0,0)
E=(1)

(b)

H=(0,0,Z)
E=(1)

H=(Z,Z,0)
E=(1;1)

(h)

H=(Z,0,0)
E=(1)

(a')

H=(0,Z,0)
E=(–1)

H=(Z^2,0,0)
E=(–1,1)

(c)

H=(0,0,0)

H=(Z,0,0)
E=(1)

(c')

H=(0,Z,0)
E=(–1)

H=(Z^2,0,0)
E=(–1,1)

H=(0,0,0)

(d')

H=(0,Z,0)
E=(–1)

H=(Z^2,0,0)
E=(–1,1)

H=(0,Z,0)
E=(1)

H=(Z,0,0)
E=(1)

(d) H=(0,Z,0)
E=(1)

H=(Z,0,0)
E=(1)

H=(Z,0,0)
E=(1)

(e)

H=(0,0,0)

H=(Z,0,0)
E=(1)

(f)

H=(0,Z,0)
E=(1)

H=(0,0,Z)
E=(1)

H=(Z,0,0)
E=(1)

(g)

H=(0,0,0)

H=(Z,0,0)
E=(1)

Figure 8. Conley-Morse graphs for the continuation classes shown in
Figure 5 for the Chialvo model with a = 0.89, c = 0.28, and (b, k) ∈
Λ2 = [0, 1] × [0.015, 0.030]. The background color of each frame is the
same as that of the corresponding continuation class in Figure 5.

map shows that the orientation is preserved. This situation corresponds to what is
shown in Figure 3 (c).

On the other hand, when we move from Region (a) through Region (c) down to
Region (d) by decreasing the parameter k, we observe a numerical version of the
saddle-node bifurcation. A new numerical Morse set appears in Region (c) with
trivial index, which then splits into two Morse sets: one with one unstable direction
(a saddle) and one attractor. These features can be derived from the Conley index;
see Figure 12 and compare the indices to the ones shown in Figures 3 (a) and 2 (a).

When the parameter b is increased to move from Region (d) to Region (e), the newly
created saddle joins the large attractor, and a large numerical Morse set appears; see
Figure 13. The Conley index of this large numerical Morse set, however, is trivial,
which suggests that it might contain no non-empty invariant set. Its existence is most
likely due to the dynamics slowing down in preparation for another bifurcation. Such
a bifurcation indeed appears if we increase b further to enter Region (f). The large
numerical Morse set splits into a saddle and a repeller, which is another version of
the saddle-node bifurcation; see Figure 14 and compare the indices to the ones shown
in Figures 3 (a) and 3 (c). Increasing the parameter b further makes these two sets
collapse in Region (g) and disappear in Region (h).

An interesting and somewhat unusual bifurcation occurs when one decreases the
parameter k to move from Region (b) to Region (f). The circle-shaped attractor
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(a)

H=(Z,0,0)
E=(1)

(b)

H=(0,0,Z)
E=(1)

H=(Z,Z,0)
E=(1;1)

(h)

H=(Z,0,0)
E=(1)

(a')

H=(0,Z,0)
E=(–1)

H=(Z^2,0,0)
E=(–1,1)

(c)

H=(0,0,0)

H=(Z,0,0)
E=(1)

(c')

H=(0,Z,0)
E=(–1)

H=(Z^2,0,0)
E=(–1,1)

H=(0,0,0)

(d')

H=(0,Z,0)
E=(–1)

H=(Z^2,0,0)
E=(–1,1)

H=(0,Z,0)
E=(1)

H=(Z,0,0)
E=(1)

(d) H=(0,Z,0)
E=(1)

H=(Z,0,0)
E=(1)

H=(Z,0,0)
E=(1)

(e)

H=(0,0,0)

H=(Z,0,0)
E=(1)

(f)

H=(0,Z,0)
E=(1)

H=(0,0,Z)
E=(1)

H=(Z,0,0)
E=(1)

(g)

H=(0,0,0)

H=(Z,0,0)
E=(1)

Figure 9. Continuation graph between the continuation classes shown
with the corresponding Conley-Morse graphs for the Chialvo model
with a = 0.89, c = 0.28, and (b, k) ∈ Λ2 = [0, 1] × [0.015, 0.030]. The
background color of each frame is the same as that of the corresponding
continuation class in Figure 5. Connections corresponding to classes
intersecting by a single vertex, such as between (a) and (f), are neither
shown here nor discussed in the text for the sake of clarity.

1.2 1.4 1.6 1.8
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Figure 10. Morse decompositions for selected parameter boxes in Re-
gion (a) shown in Figure 5. The parameter boxes have integer coordi-
nates (21, 56) and (36, 56), and correspond to (b, k) ∈ [0.105, 0.110] ×
[0.0262, 0.0264], and (b, k) ∈ [0.180, 0.185] × [0.0262, 0.0264], respec-
tively. There is exactly one attracting numerical Morse set in each
case. Note the different scale in both plots.
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0: 308
H = (0, 0, Z)

Map 2:
#1 = 1

Eigenvalues 2:
(1).

1: 30897
H = (Z, Z, 0)

Map 0:
#1 = 1
Map 1:
#1 = 1

Eigenvalues 0:
(1).

Eigenvalues 1:
(1).

0 1 2 3 4 5
x

0.5

1.0

1.5

2.0

2.5

y
Figure 11. The Morse graph (left) and the Morse decomposition
(right) computed for a sample parameter box taken from Region (b)
shown in Figure 5. The parameter box with integer coordinates
(56, 56) was chosen, which corresponds to (b, k) ∈ [0.280, 0.285] ×
[0.0262, 0.0264]. There is an attractor in the shape of a circle, and
a small repeller inside.

0: 3
H = (0, Z, 0)

Map 1:
#1 = 1

Eigenvalues 1:
(1).

1: 3
H = (Z, 0, 0)

Map 0:
#1 = 1

Eigenvalues 0:
(1).

2: 659
H = (Z, 0, 0)

Map 0:
#1 = 1

Eigenvalues 0:
(1). 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

x

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

y

Figure 12. The Morse graph (left) and the Morse decomposition
(right) computed for a sample parameter box taken from Region (d)
shown in Figure 5. The parameter box with integer coordinates
(24, 16) was chosen, which corresponds to (b, k) ∈ [0.120, 0.125] ×
[0.0182, 0.0184]. There is a small attractor–repeller pair and another
attractor; this is a case of bi-stability.Th
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0: 76890
H = (0, Z^5, 0)

Map 1 = 0

1: 3
H = (Z, 0, 0)

Map 0:
#1 = 1

Eigenvalues 0:
(1).

0 1 2 3 4 5 6
x

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

y

Figure 13. The Morse graph (left) and the Morse decomposition
(right) computed for a sample parameter box taken from Region (e)
shown in Figure 5. The parameter box with integer coordinates
(35, 23) was chosen, which corresponds to (b, k) ∈ [0.175, 0.180] ×
[0.0196, 0.0198]. The Conley index of the large numerical Morse set
is trivial. The tiny attractor is barely visible at the top left corner of
the figure.

0: 293
H = (0, 0, Z)

Map 2:
#1 = 1

Eigenvalues 2:
(1).

1: 30
H = (0, Z, 0)

Map 1:
#1 = 1

Eigenvalues 1:
(1).

2: 5
H = (Z, 0, 0)

Map 0:
#1 = 1

Eigenvalues 0:
(1).

0.0 0.2 0.4 0.6 0.8
x

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

y

Figure 14. The Morse graph (left) and the Morse decomposition
(right) computed for a sample parameter box taken from Region (f)
shown in Figure 5. The parameter box with integer coordinates
(55, 23) was chosen, which corresponds to (b, k) ∈ [0.275, 0.280] ×
[0.0196, 0.0198]. There is a repeller (shown in black), a saddle (shown
in blue) and a small attractor (shown in red).
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22 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

observed in Region (b) splits into a node-type attractor and a saddle, while the node-
type repeller inside persists. Apparently, this might be a saddle–node bifurcation.
Right after the transition, a small neighborhood of the attractor appears close to
the large circular isolating neighborhood of the saddle, and the latter one suddenly
shrinks with further decrease in b; see Figure 15.

0 2 4
x

0.0

0.5

1.0

1.5

2.0

2.5

y

0 2 4
x

0.0

0.5

1.0

1.5

2.0

2.5

y

0.0 0.2 0.4 0.6 0.8
x

1.2

1.4

1.6

1.8

2.0

2.2

2.4

y

Figure 15. Numerical Morse decompositions in transition from Re-
gion (b) to Region (f) shown in Figure 5. The leftmost plot corre-
sponds to the parameter box with integer coordinates (62, 35), locatd
in Region (b), the other two – parameter boxes (62, 30) and (62, 29),
respectively, both located in Region (f). The actual parameters are:
b ∈ [0.310, 0.315] in all the three cases, and k ∈ [0.0208, 0.0210],
k ∈ [0.0220, 0.0212], or k ∈ [0.0210, 0.0212], respectively. In the middle
plot, the attractor shown in red is barely visible at the top left corner,
surrounded by the blue set. Note that the blue set is topologically a
circle, but its leftmost edge is very thin and might not be well visible
in the plots.

There are also a few additional regions in the continuation diagram for very small
values of the parameter b that can be seen in Figure 5 and can be investigated with the
interactive continuation diagram available at [27]. When decreasing b from Regions
(a), (c) and (d) to Regions (a′), (c′) and (d′), respectively, that is to b ∈ [0.010, 0.015],
an attracting isolating neighborhood splits into a period-two attracting orbit and
a saddle in the middle, with the map reversing the orientation, like in a typical
period-doubling bifurcation; compare the indices to the ones shown in Figures 2 (b)
and 3 (b). When b is decreased even further, at b ∈ [0.005, 0.010], the period-doubling
bifurcation is undone, and the two numerical Morse sets again become one. For the
lowest values of b, that is, b ∈ [0, 0.005], an additional numerical Morse set appears
that looks like a layer on top of the attracting numerical Morse set. Its Conley index
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 23

is trivial, and thus its appearance is most likely due to slow-down in the dynamics;
see Figure 16.
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Figure 16. Numerical Morse decompositions for very small values
of b shown in Figure 5 as vertical stripes along the left-hand side
edge of the diagram. The parameter boxes chosen for the plots are
(from left to right): (0, 51), (1, 51), and (2, 51). The actual parame-
ters are: k ∈ [0.0252, 0.0254] in all the three cases, and b ∈ [0, 0.005],
b ∈ [0.005, 0.01], or b ∈ [0.01, 0.015], respectively. The thin numeri-
cal Morse set (drawn in black) in the leftmost plot has trivial Conley
index. The isolating neighborhood in the middle plot is an attractor.
The Morse decomposition in the rightmost plot looks like a period-two
attracting orbit with a saddle in the middle.

We would like to point out the fact that our discussion of the dynamics and bi-
furcations was only based on isolating neighborhoods and their Conley indices. The
actual dynamics might be much more subtle and complicated, and therefore, any
statements about possible hyperbolic fixed points are merely speculations. Moreover,
the actual bifurcations may take place for some nearby parameters, at locations that
are somewhat shifted from the lines shown in Figures 32 and 5. Nevertheless, if the
isolating neighborhoods are small then, from the point of view of applications in which
the accuracy is limited and there is some noise or other disturbances, the numerical
results shed light onto the global dynamics and our discussion explains it in terms
of simple models that can be built with hyperbolic fixed points. This is not true,
however, in the cases in which the computations yield large isolating neighborhoods.
Indeed, the computational method introduced in [1] does not provide any means for
understanding the dynamics inside such sets, apart from what can be deduced from
the knowledge of their Conley indices. We proposed some methods for this purpose
in Section 3.2 and we show their application in Section 4.2.

3.5. Sizes of invariant sets in the Chialvo model and the spiking-bursting
oscillations. The diagram in Figure 17 shows the total size of all the numerical
Morse sets constructed for all the parameter combinations considered. This diagram
complements the corresponding continuation diagram (Figure 5) in providing the
information about the global overview of the dynamics. Note that a corresponding
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24 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

diagram was also computed for the wider ranges of the two parameters, which provides
a more suggestive picture; see Figure 33 in Appendix B.

A larger numerical Morse set allows more room for fluctuations or even appearance
of complicated dynamics in a real system that is approximated by the mathematical
model. In particular, in the Chialvo model, the appearance of spiking-bursting os-
cillations is connected with the emergence of large numerical Morse sets, especially
if this phenomenon is combined with chaotic dynamics. Indeed, in neuron models,
such as the Chialvo model, an attracting equilibrium point corresponds to the resting
state of the neuron, whereas tonic (sustained) spiking is connected with the existence
of oscillatory solutions (which do not converge to the stable periodic fixed point).
However, also the amplitude of these oscillatory solutions must be large enough since
oscillatory solutions with small amplitudes would rather correspond to “subthresh-
old” oscillations than to spikes. If such an attracting oscillatory orbit is periodic then
the spike-pattern fired by the neuron is (asymptotically) periodic as well. On the
other hand, non-periodic oscillatory solutions (such as, for example, the blue orbit
shown in Figure 21) lead to chaotic spiking patterns where irregular spikes with vary-
ing amplitudes are observed, often interspersed with small subthreshold oscillations.
If some spikes on these orbits are separated only by short interspike intervals, fol-
lowed by periods of quiescence (no spikes), then we can say that spikes are grouped
into bursts, i.e., we have spiking-bursting solutions; this happens typically when the
oscillatory solution winds many times around the unstable fixed point (which is the
case of the blue orbit in Figure 21, see also Figure 10 in [5]). Therefore, the existence
of spiking-bursting solutions is directly connected with the existence of large Morse
sets, and our results provided in this work allow to indicate various regions in the
parameter space in which one can look for such phenomena. On the other hand, the
phenomenon of multistability, such as co-existence of an attracting oscillatory solu-
tion and a quiescence solution (attracting fixed point) inside the area delineated by
the oscillatory orbit, also often leads to large Morse sets. In such a case a proper per-
turbation might cause the neuron to switch from sustained periodic firing to resting
and vice versa (see also Figure 8 in [5].)

In the Chialvo model, one can notice that very large numerical Morse sets, con-
sisting of some 80,000 grid elements or more, appear especially in two regions of the
parameters: (b, k) ≈ (0.5, 0.03) and (b, k) ≈ (0.2, 0.03). Such parameters may make
the model resistant to purely analytical investigation due to its complexity, making
our methods a better fit for the purpose of understanding the dynamics. One may
also speculate that in the case of larger sets the dynamics is less predictable and thus
chaotic dynamics might emerge.

Although it is not entirely obvious, it may be possible that some numerical Morse
decompositions fall in the same continuation class even if the sizes of the numerical
Morse sets being matched differ considerably. Indeed, this happens in our case. For
example, sudden change in the size of the numerical Morse sets sometimes can be
found for (b, k) ≈ (0.8, 0.025) or (b, k) ≈ (0.17, 0.026). The reason in all the observed
cases seems to be the emergence of cyclic behavior that corresponds to the spiking-
bursting oscillations in the Chialvo model, as explained above.

An important observation is that sets of parameters that yield very large numerical
Morse sets sometimes span across adjacent continuation classes. This can be observed,
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for example, for (b, k) ≈ (0.22, 0.025), where the Conley-Morse diagram changes only
because the unstable fixed point can be isolated from the large attracting isolating
neighborhood. This results in a qualitative change in the perception of the dynamics
at the prescribed resolution, switching from Region (a) to Region (b), even though
the actual behavior of the vast majority of trajectories might still be similar.

0.0 0.2 0.4 0.6 0.8 1.0
b

0.015

0.020

0.025

0.030

k

20000

40000

60000

80000

100000

Figure 17. The size of the union of all the numerical Morse sets found
in the phase space for the corresponding parameters in Λ2 in the Chialvo
model. The black lines indicate borders between different continuation
classes; see Figure 5 for the corresponding continuation diagram.

4. Finite resolution recurrence and its variation

While Conley index is a powerful topological tool that provides reliable information
about the isolating neighborhood, it does not provide extra information about the
dynamics inside of the isolating neighborhood. This may be especially disappointing
if the neighborhood is large, consisting of hundreds of thousands of grid elements.
Since this set corresponds to a strongly connected path component of the graph
representation of the map, there exists a path in the graph from every grid element
to any other element, including a path back to itself. In particular, a periodic orbit
gives rise to a cycle in the graph of the same length, and thus a fixed point (stable
or not) yields a cycle of length 1. On the opposite, a path in the graph corresponds
to a pseudo-orbit for the underlying map: after each iteration we may need to switch
to another point within the image of the grid element in order to follow a path in the
graph by means of pieces of orbits.
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We begin by defining the notion of Finite Resolution Recurrence in Section 4.1,
and we show the results of its computation on three dynamical systems of different
nature. Then in Section 4.2, we show and discuss the results of computation of
Finite Resolution Recurrence (FRR) for some large numerical Morse sets computed
for the Chialvo model. Since we notice that it is the variation of FRR that is crucial
in distinguishing between different types of dynamics, we introduce the notion of
Finite Resolution Recurrence Variation (FRRV) in Section 4.3, and also its normalized
version (NFRRV) in Section 4.4. Finally, in Section 4.5, we discuss the computation
of both quantities for the six dynamical systems discussed in Sections 4.1 and 4.2.
We also provide a diagram (Figure 27) that shows the result of the computation of
NFRRV for a large range of parameters in the Chialvo model.

4.1. Finite resolution recurrence. Recurrence is one of fundamental properties of
many dynamical systems. In order to get insight into the recurrent dynamics inside
each numerical Morse set, we introduce the notion of Finite Resolution Recurrence
(FRR for short) and an algorithm for its analysis. This is a new method for the
analysis of dynamics in a Morse set by means of the distribution of minimum return
times. For alternative approaches to measure the recurrence in dynamical systems
see, for example, [22].

In what follows, we define a finite resolution version of the notion of recurrence, we
explain the rigorous numerical information that it provides about trajectories, and
we show the usefulness of this notion on three examples.

Definition 1. Let F : N ( N be a multivalued map on a set N ⊂ G(B), and let
Q ∈ N . The recurrence time of Q in N with respect to F is defined as follows:
rec(Q) := min{k > 0 : Q ∈ Fk(Q)}, with the convention min ∅ =∞.

Recurrence times in a numerical Morse set can be effectively computed. We propose
a specific algorithm, prove its correctness, and determine its computational complex-
ity (with proof) in Appendix A.

At this point we emphasize the fact that knowledge of the recurrence time of a grid
element provides certain rigorous information about the dynamics of the points that
belong to the grid element. Specifically, if rec(Q) = r then for every x ∈ Q, we know
that if the trajectory x = x0, x1, . . . , xr−1 stays in |N | then xi /∈ Q for i = 1, . . . , r−1.
In particular, there is no periodic orbit contained in |N | that goes through Q whose
period is below r. On the other hand, if rec(Q) = r then we know that there exists
a δ-pseudo-orbit x0, . . . , xr, with δ = maxQ∈N diam(|F(Q)|), that begins and ends in
Q; this is a sequence of points xi ∈ |N | such that x0, xr ∈ Q, and dist(f(xi−1), xi) < δ
for all i ∈ {1, . . . , r}.

In order to illustrate the usefulness of recurrence times, we show three examples.
Figure 18 shows a numerical Morse set constructed for the well-known 2-dimensional
Hénon map [11] that exhibits chaotic dynamics. The recurrence times are low, and
different values are scattered unevenly throughout the entire set. It seems that some
orbits with low periods were identified correctly, especially the fixed point and the
period-two orbit. Figure 19 shows an example of a large numerical Morse set com-
puted for the non-linear Leslie population model discussed in [1]. The recurrence
times reveal its internal structure. Indeed, separate isolating neighborhoods for a
fixed point in the middle and period-3 orbits can be found for nearby parameters or
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 27

when conducting the computation at a much finer resolution. Figure 20, on the other
hand, shows a numerical Morse set that is an isolating neighborhood for a time-t dis-
cretization of the Van der Pol oscillator flow on R2 for the parameters for which the
expected attracting periodic trajectory is observed. In this example, one can clearly
see the recurrence time 1 that corresponds to the fixed point in the middle, and high
recurrence times around 50 that identify the stable periodic trajectory.
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Figure 18. Recurrence diagram for a numerical Morse set constructed
for the Hénon map that encloses a chaotic attractor, and a histogram
that shows the amounts of the various recurrence times encountered.
The fixed points and period-2 orbits are clearly visible, as well as the
complicated inner structure of the set.

Based on the illustrations, one may conjecture that high local variation in the
recurrence time is an indicator of complicated dynamics, such as chaos. In Section 4.3,
we introduce the notion of variation of the Finite Resolution Recurrence that we
further use to effectively quantify this local variation in recurrence time.
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Figure 19. Recurrence diagram for a numerical Morse set constructed
for the Leslie population model map discussed in [1], and a histogram
that shows the amounts of the various recurrence times encountered.
Inner structure of the large isolating neighborhood is revealed, with a
fixed point and period-3 orbits.
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Figure 20. Recurrence diagram for a numerical Morse set constructed
for a time-t map for the Van der Pol oscillator with a periodic attract-
ing trajectory, and a histogram that shows the amounts of the various
recurrence times encountered. The recurrence times for the map vary
from 1 around the fixed point at the origin up to 59 at the border of
the set.

4.2. Recurrence analysis of large invariant sets in the Chialvo model. Through
numerical simulations, we identified three kinds of dynamics that yield large numer-
ical Morse sets in the Chialvo model. They are shown in Figure 21, and were found
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TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 29

for some parameter values close to those considered in the paper, and thus not di-
rectly related to the continuation diagram shown in Figure 5. The initial condition
(2, 1.8) was taken in all the cases. Plotting the trajectories for 100,000 iterations was
started after 1 million of initial iterations to allow the trajectories settle down on the
attractors; we remark that 10,000 initial iterations were not enough for the winding
orbit. In addition to them, an attracting fixed point is shown that appears for another
combination of the parameters.

The fixed point around (0, 2.5) is shown in Figure 21 in black, the prominent
periodic orbit in orange, an orbit that seems to follow a chaotic attractor is shown in
partly transparent blue, and a winding periodic orbit with weak attraction is shown
in red. This last orbit does not look like part of a chaotic trajectory, because the few
dozens points in the figure actually correspond to 100,000 iterates, so this is most
likely a periodic attractor. Note the small differences in the bifurcation parameters
that yield the qualitatively different asymptotic behavior of the orbits.

We remark that we did not prove the existence of the attractors nor chaotic dy-
namics shown in Figure 21; however, the numerical simulations that we conducted
can be treated as strong numerical evidence in favor of such conjectures.

Figure 21. Four specific types of attracting orbits observed in numer-
ical simulations in the Chialvo model, discussed in Section 4.2.

Recurrence diagrams for the numerical Morse sets constructed for the three com-
binations of parameters shown in Figure 21 that yield large sets are shown in Figures
22–24. Since the time complexity of the algorithm is worse than O(|V |2), we con-
ducted the computations at a relatively low resolution in the phase space in order to
quickly obtain the results (in less than 2 minutes each) and to clearly illustrate the
results. The constructed numerical Morse sets consist of 8,265, 7,740, and 6,740 grid
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30 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

elements, respectively. Instead of the exact values of the parameters a and k, intervals
of width 0.0001 were taken in order to make the computations more realistic.

Recurrence histograms are shown along with each recurrence diagram in Figures 22–
24. There are some differences between these histograms that reflect subtle differences
in recurrence diagrams. They are discussed in the next sections.
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Figure 22. Recurrence diagram with histogram computed for the
large numerical Morse set found for the Chialvo map with a ≈ 0.89,
b = 0.18, c = 0.28, and k ≈ 0.03, for which NFRRV = 1.447. This is
the range of parameters that corresponds to the orbit that looks like a
chaotic one in numerical simulations whose results are shown in Fig-
ure 21.
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Figure 23. Recurrence diagram with histogram computed for the
large numerical Morse set found for the Chialvo map with a ≈ 0.9,
b = 0.18, c = 0.28, and k ≈ 0.022, for which NFRRV = 1.661. This
is the range of parameters that corresponds to the clear periodic orbit
observed in numerical simulations whose results are shown in Figure 21.
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Figure 24. Recurrence diagram with histogram computed for the
large numerical Morse set found for the Chialvo map with a ≈ 0.9,
b = 0.18, c = 0.28, and k ≈ 0.03, for which NFRRV = 1.598. This is
the range of parameters that corresponds to the periodic orbit wind-
ing multiple times observed in numerical simulations whose results are
shown in Figure 21.

4.3. Finite Resolution Recurrence Variation. Let us recall the notion of varia-
tion of a function in multiple variables introduced by Vitali [39]. It is a generalization
of the well known notion of variation of a real-valued function in one variable.
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32 P. PILARCZYK, J. SIGNERSKA-RYNKOWSKA, AND G. GRAFF

Definition 2 (see [39]). Let f : B → R be a function defined on a rectangular set
B = [a1, b1]× · · · × [an, bn] ⊂ Rn. For k ∈ {1, . . . , n} and hk > 0, define

∆k
hk

(f, x) := f(x1, . . . , xk + hk, . . . , xn)− f(x1, . . . , xk, . . . , xn),

and recursively:

∆h1(f, x) := ∆1
h1(f, x),

∆h1,...,hk
(f, x) := ∆k

hk

(
∆h1,...,hk−1 , x

)
.

Vitali variation of f on B is defined as the supremum of the sums

(4)
N1∑
i1=1
· · ·

Nn∑
in=1

∣∣∣∣∆h
i1
1 ,...,h

in
n

(
f, (xi11 , . . . , xinn )

)∣∣∣∣
over all the possible finite subdivisions of [a1, b1], . . . , [an, bn], where hijk is the differ-
ence between the subdivision points x1

k, . . . , x
Nk+1
k of [ak, bk].

Note that the recurrence time function is constant on the interior of each grid
element, and can be set to the minimum of the values of the intersecting grid elements
at each boundary point. Therefore, for the practical computation of this variation,
we only need to check the differences in the values of the function on adjacent grid
elements. In two dimensions, the formula on a grid of (N + 1)× (M + 1) rectangular
grid elements reduces to the following:

(5)
N∑
i=1

M∑
j=1
|f(xi+1, xj+1)− f(xi+1, xj)− f(xi, xj+1) + f(xi, xj)| ,

and we consider only those values for which the four grid elements are all in the set
that we analyze. We make this more precise in the following.

Definition 3 (Finite Resolution Recurrence Variation (FRRV)). Let N ⊂ G(B) and
let f : N → R. Given an n-tuple of integers (j1, . . . , jn), denote by Q(j1, . . . , jn) the
grid element in G(B) referred to by this n-tuple of integers. Let I(N ) denote the set
of those grid elements Q(j1, . . . , jn) ∈ N for which all the grid elements of the form
Q(j1 +δ1, . . . , jn+δn), where δi ∈ {0, 1}, are in N . Following the idea of Definition 2,
define

∆k

(
f,Q(j1, . . . , jn)

)
:= f

(
Q(j1, . . . , jk + 1, . . . , jn)

)
− f

(
Q(j1, . . . , jk, . . . , jn)

)
,

and recursively:

∆1,...,k
(
f,Q(j1, . . . , jn)

)
:= ∆k

(
∆1,...,k−1, Q(j1, . . . , jn)

)
.

Finite Resolution Recurrence Variation of f on N is defined as the sum

(6) FRRV(f,N ) =
∑

K∈I(N )
|∆1,...,n(f,K)|
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4.4. Normalized Finite Resolution Recurrence Variation. It is clear that the
variation grows with the increase in the size of the set, because there are more and
more adjacent grid elements along the border with the same difference. Therefore,
we propose to normalize the resulting variation by dividing it by a quantity that
corresponds to the diameter of the set on which the variation is computed, so that
the normalized variation is independent of the resolution at which we investigate the
dynamics. In an n-dimensional system, we propose to divide by n

√
cardN .

Moreover, instead of the absolute value of the variation of the recurrence, we are
more interested in the relative variation in comparison to the average recurrence
times. For example, the recurrence times in the Van der Pol system (see Figure 20)
are considerably larger than in the Hénon system (see Figure 18), and thus small
relative fluctuations in the recurrence times might yield considerably higher values
of the variation in the former map than in the latter. In order to overcome this
problem, it seems reasonable to further normalize the variation by dividing it by the
mean recurrence time encountered. We thus propose the following.

Definition 4 (NFRRV). Let N ⊂ G(B). Let f : N → R. Let rec(N ) denote mean
recurrence in N , that is, ∑Q∈N rec(Q)/ cardN . Normalized Finite Resolution Re-
currence Variation (NFRRV) of f in N is the following quantity:

(7) NFRRV(f,N ) := FRRV(f,N )
rec(N ) n

√
cardN

,

where n is the dimension of the phase space.

We show the results of computation of Finite Resolution Recurrence Variation
(FRRV) and its normalized version (NFRRV) in Section 4.5 below.

4.5. Computation of the Normalized Finite Resolution Recurrence Varia-
tion (NFRRV). Let us begin by considering the Finite Resolution Recurrence Vari-
ation (FRRV) introduced in Section 4.3. In order to check how this quantity changes
with the change of the resolution at which a numerical Morse set is computed, we con-
ducted the following experiment. We chose the six specific dynamical systems whose
FRR was discussed so far: the three sample systems described in Section 4.1 and the
three cases of the Chialvo model shown in Section 4.2. For each of these systems,
we constructed a numerical Morse set at a few different resolutions. The computed
FRRV is shown in Figure 25 as a function of the size of the set, counted in terms of
the number of grid elements. One can immediately notice the increasing trend in all
the cases, which justifies the need for normalization introduced in Section 4.4.

Figure 26 shows the Normalized Finite Resolution Recurrence Variation (NFRRV)
computed for the six sets. One can see that the values computed for the systems
that experience complicated dynamics (Hénon, Leslie) still have an increasing trend,
which is clearly due to the fact that with the increase in the resolution, more and more
details of the dynamics are revealed. However, the values of NFRRV computed for the
Van der Pol oscillator, as well as for the Chialvo model, are essentially constant, with
the latter somewhat above the former, which indicates a slightly more complicated
dynamics. The fact that the Chialvo model in the parameter regimes corresponding
to chaos and long periodic orbits shows smaller values of NFRRV than the Hénon
attractor or the chaotic Leslie model might also be due to the fact that the Chialvo
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Figure 25. Finite Resolution Recurrence Variation (FRRV) com-
puted for six sample systems at several different resolutions.
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Figure 26. Normalized finite resolution recurrence variation
(NFRRV) computed for six sample systems at several different resolu-
tions.

model behaves like a fast-slow system, in which trajectories spend long time in some
parts of the phase space and very quickly pass through others, and this behavior is
common for almost all trajectories.

A probably counter-intuitive observation is that out of the three sets constructed
for the Chialvo model, the lowest values of NFRRV are encountered by the set with
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chaotic dynamics. Since the chaotic trajectory wanders round the set in rotational
motion, its effect is the actual averaging of recurrence times, which can be seen in
Figure 22 as compared to Figures 23 and 24. This is in contrast to the Hénon attractor
in which the trajectories tend to run apart each other due to the positive Lyapunov
exponent. Indeed, the type of chaotic dynamics is substantially different in both
cases, because the Chialvo model is a slow-fast system, and the method introduced
in [1] tends to capture the “fast” dynamics only.

Let us indicate at this point that computation of FRRV gives rise to method for
conducting numerical comparison of dynamics. By comparing the system under in-
vestigation with some classical dynamical systems one can obtain certain quantitative
information on the complexity of the dynamics. Although FRR values provide rigor-
ous information (e.g. on the lower bound of recurrence time for the actual trajectories,
as discussed on page 26 in Section 4.1), the FRRV value itself does not provide rigor-
ous evidence of the type of recognized dynamics. On the other hand, FRRV seems to
be promising heuristic that enables classification of the dynamics and is in particular
useful for the identification of areas of potential chaotic behavior. Thus one of pos-
sible applications of FRRV is to precede the application of rigorous numerical proof
methods, for which the areas of analysis usually have to be strictly defined.

Figure 27 shows the results of comprehensive computation of NFRRV for the
Chialvo model for a wide range of parameters. Since the computation of FRR is
considerably more demanding (in terms of CPU time and memory usage) than the set-
oriented analysis of dynamics discussed in Section 3.3, we conducted the computations
for a somewhat narrower range of the parameters (b, k) ∈ Λ3 := [0, 0.5]× [0.017, 0.027]
subdivided into 200 × 50 boxes, and with the resolution in the phase space reduced
to 256 × 256. The phase space was taken as B3 := [−0.1, 7.5] × [−1.3, 2.7]. Like
previously, we fixed a := 0.89 and c := 0.28. The computation time was a little
over 372 CPU-hours and the memory usage did not exceed 491 MB per process.
The continuation diagram that we obtained was similar to the relevant part of the
diagram shown in Figure 5, and the Conley-Morse graphs with phase space images
can be browsed at [27], additionally with recurrence diagrams and the corresponding
histograms created for the largest numerical Morse set observed in each computation.
Since the value of NFRRV computed for small sets (say, with cardN < 1000) does
not correspond to the intuitive interpretation, the values computed for all the numer-
ical Morse sets of less than 1000 elements were shown in gray in Figure 27. We use
the results of these computations in Section 5.
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Figure 27. Normalized Finite Resolution Recurrence Variation
(NFRRV) computed for the Chialvo model (1) with a = 0.89, b ∈ [0, 0.5]
(horizontal axis), c = 0.28, and k ∈ [0.017, 0.027] (vertical axis). The
black lines indicate borders between different continuation classes. Val-
ues computed for numerical Morse sets of less than 1,000 elements were
grayed out.

5. Recurrence as a tool in classification of dynamics

In order to demonstrate the usefulness of the quantities that were introduced in
Sections 4.1–4.4 (specifically, FRR and NFRRV), we conducted the following two
analyses. We used the data computed in Section 4.5 to group parameters by the
shape of the corresponding recurrence histogram (discussed in Section 5.1), and by
the value of NFRRV together with the median of FRR (discussed in Section 5.2). We
used the unsupervised machine learning density-based spatial clustering algorithm
DBSCAN that finds prominent clusters in the data and leaves the remaining points
as “noise”. The results of this kind of clustering are shown in Figures 28 and 31,
respectively.

We would like to point out the fact that our analysis of variation of recurrence
times within large invariant sets is aimed at providing some quantification of chaos
in the Chialvo model and developing guidelines for how to analyze other systems. So
far, to the best of our knowledge, chaos in the Chialvo model has not been studied
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analytically with the exception of the work [15] where the authors studied chaos in the
sense of Marotto (existence of the so-called snap-back repeller) which is closer to the
notion of Li-Yorke chaos than chaos in the sense of Devaney (see e.g. [41]). However,
the existence of Marotto chaos in their work is mostly relevant to the case k < 0,
thus not much connected with our results. The existence of the snap-back repeller in
biological systems was examined in [20] with the use of computations conducted in
interval arithmetic.
5.1. Recurrence histograms. In our first analysis, we took the recurrence his-
tograms, such as those shown in Figures 22, 23, 24. We removed the bar correspond-
ing to recurrence 1 from each of the histograms, and we scaled the horizontal axis to
make each histogram consist of precisely 10 bars. We then normalized the histograms
so that the sum of the heights of the bars was equal 1. Both the original and reduced
histograms can be browsed at [27]. We equipped the 10-dimensional space of all such
histograms with the l1 metric (also known as the Manhattan metric, or the taxicab
metric). We restricted our attention to all the histograms obtained for the largest
numerical Morse set at each of the 200× 50 parameter boxes, provided that this set
consisted of at least 1,000 boxes in the phase space. Then we ran the DBSCAN clus-
tering algorithm on this collection of histograms. This algorithm finds core samples
of high density and expands clusters from them. It takes two parameters: the max-
imum distance ε between two samples for one to be considered in the neighborhood
of the other, and the number p of samples in a neighborhood of a point to be consid-
ered as a core point. We tried all the combinations of ε ∈ {0.1, 0.2, . . . , 1.3, 1.4} and
p ∈ {50, 100, 150, 200, 250, 300}. The most useful clustering was obtained for ε = 0.2
and p = 150, and is shown in Figure 28.

It is interesting to see the histograms that correspond to the consecutive classes;
they are shown in Figure 29. The first histogram (Class 1) shows the presence of
many boxes in the numerical Morse set with a wide range of recurrence times. The
shape of the histogram resembles normal distribution skewed to the right and thus
is most similar to the histogram obtained for the Hénon map (see Figure 18). This
shape of a histogram might thus be an indicator of chaotic dynamics. Indeed, this
region of parameters coincides with the neighborhood of part of the region in which
large attractors were found in numerical simulations (see Figure 34 in Appendix C)
that also indicate likely chaotic dynamics.

The second histogram (Class 2) has three major peaks: the highest one in the
middle, another at high recurrence, and a considerably less prominent one for some
lower recurrence values. This result reflects the internal structure of the numerical
Morse set that can be seen in Figure 30, and both the histogram and the recurrence
diagram resemble the situation observed in the Leslie system shown in Figure 19.

The next four histograms are similar to each other, with the high peak around 34,
but with higher and higher recurrence values appearing and thus pushing the peak
to the left (it gets shifted from the 3rd position from the right to the 4th, 5th, and
6th positions, respectively). All the cases are somewhat similar to the Van der Pol
oscillator case shown in Figure 20, and might indicate simple, non-chaotic dynamics,
at least as perceived at the finite resolution.
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Figure 28. Clusters of similar recurrence histograms found by the
DBSCAN algorithm in the Chialvo model (1) with a = 0.89, b ∈ [0, 0.5]
(horizontal axis), c = 0.28, and k ∈ [0.017, 0.027] (vertical axis). The
black lines indicate borders between different continuation classes. His-
tograms for numerical Morse sets of less than 1,000 elements were not
taken into consideration.
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Figure 29. Reduced recurrence histograms computed for represen-
tative parameter boxes from the classes shown in Figure 28.
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Figure 30. Recurrence diagram with histogram computed for the
large numerical Morse set found for the Chialvo map with a = 0.89,
b ∈ [0.225, 0.2275], c = 0.28, and k ∈ [0.0232, 0.0234]. These parame-
ters correspond to the box no. (90, 31) of parameters in the computation
described in Section 4.5.
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5.2. Clustering based on FRR and NFRRV. In our second analysis, we took
the pairs of two numbers: NFRRV and the median of FRRs computed for the largest
numerical Morse set at each of the 200 × 50 parameter boxes. We only considered
numerical Morse sets of at least 1,000 boxes in the phase space. We standardized each
of the two variables (subtracted the mean and divided by the standard deviation).
We tried DBSCAN with the same values of ε and p as in the first analysis, but we
first multiplied the variables by 7 in order to compensate for the lower dimension of
the space. We used the l1 metric. The most reasonable clustering was obtained for
ε = 0.8 and p = 100, and is shown in Figure 31.
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Figure 31. Clusters of similar values of NFRRV together with the
median of FRR found by the DBSCAN algorithm in the Chialvo model
(1) with a = 0.89, b ∈ [0, 0.5] (horizontal axis), c = 0.28, and k ∈
[0.017, 0.027] (vertical axis). The black lines indicate borders between
different continuation classes. Histograms for numerical Morse sets of
less than 1,000 elements were not taken into consideration.

The characteristics of each of the six clusters found in this computation are shown
in Table 1. One can notice that the features that distinguish Cluster 1 from the others
is its lowest FRR together with relatively high NFRRV, which might be an indicator
of chaotic dynamics. Indeed, low values of FRR were found in the Hénon system (see
Figure 18) and in the Leslie model (see Figure 19), with very high values of NFRRV
(see Figure 26). Like in the first analysis, this region of parameters coincides with the
neighborhood of part of the region in which large attractors were found in numerical
simulations (see Figure 34 in Appendix C) that also indicate likely chaotic dynamics.
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Cluster 3 has the second lowest median FRR; however, its NFRRV values are rela-
tively low. Even though numerical simulations found some relatively large attractors
in some of the parameters in Cluster 3 (see Figure 34 in Appendix C), the FRR and
NFRRV values do not suggest the existence of chaotic dynamics and comply with
findings of our first analysis.

An interesting observation is that the considerably higher values of NFRRV in
Clusters 5 and 6 provide means to distinguish the different types of dynamics found
in the different parts of Clusters 4 and 5 found in the first analysis (see Figure 28).

Clusters 2 and 4 have considerably lower values of NFRRV and higher median FRR
than were found in the other clusters. Their location is just below the possible chaotic
dynamics found in the numerical simulations (see Figure 34 in Appendix C) and thus
the dynamics might be more similar to what was found in the Van der Pol oscillator
(see Figure 20).

cluster size NFRRV median FRR
1 1133 1.378± 0.215 22.675± 0.648
2 123 0.753± 0.046 35.203± 0.584
3 752 0.927± 0.080 31.134± 1.479
4 327 0.635± 0.046 38.780± 1.384
5 315 1.287± 0.067 34.032± 1.060
6 116 1.084± 0.045 40.000± 0.643

Table 1. Characteristics of the clusters found using the following two
variables: NFRRV and median FRR. The size is given in the number
of parameter boxes, the other values are provided as mean ± standard
deviation.

6. Final remarks

To sum up, the method that we propose in this paper allows one to obtain an
overview of global dynamics in a given system, to arrange the set of parameters
depending on the type and complexity of dynamics they yield, and to compare the
observed dynamics to other known systems. In particular, it is possible to identify
ranges of parameters in which complicated dynamics is likely to occur. All this can
be done through automated computation that requires little human effort.

We would like to emphasize the fact that the mathematical framework and the
software introduced in this paper are not limited to dimension two. However, we
showed an application of this method to a two-dimensional system with two varying
parameters for the sake of the ease of visualization of the results. An important
objective for further work might thus be to understand the results of the computations
without the need for visualizing all the details. The idea of Conley-Morse graphs
meets this goal as far as understanding the global dynamics in the phase space is
considered. However, getting hold of the interplay between changes in the various
parameters of the system and the corresponding changes in the dynamics might be a
more demanding task.

By applying this method to the analysis of the Chialvo model, we obtained a
comprehensive overview of its global dynamics across a wide range of parameters.

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
29

85
9



TOPOLOGICAL-NUMERICAL ANALYSIS OF A 2D NEURON MODEL 43

We also used a heuristically justified method based on the computation of recurrence
to distinguish between the occurrence of periodic and chaotic dynamics. Note that
the method introduced in [1] does not in principle apply well to fast-slow systems,
because it generally captures the “fast” dynamics only due to its nature. However,
by adding Finite Resolution Recurrence analysis combined with machine learning, we
were able to somewhat distinguish between different kinds of “slow” dynamics. We
believe that it is worth to conduct further research in this direction.

The challenge for the future research would be to provide a complete mosaic of
bifurcation patterns. As it was illustrated in Figure 21, this would be a demanding
task, and thus we may repeat after Chialvo [5] that more “work is still needed to fully
understand the bifurcation structure of Equation (1).”
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Appendix A. Algorithmic computation of recurrence times

This appendix contains an effective algorithm that we propose for the computa-
tion of Finite Resolution Recurrence (FRR) introduced in Section 4.1, proof of its
correctness, and analysis of its computational complexity.

If N is a numerical Morse set then one can restrict the codomain of the multivalued
map F on G(B) to N in order to obtain the multivalued map F : N ( N (with some
images possibly empty). Let G = (V,E) be the directed graph that represents this
multivalued map. The recurrence time of Q ∈ N is the length of the shortest non-
trivial cycle passing through Q. If N is a strongly connected path component of the
graph G then rec(Q) is finite. The following algorithm allows one to compute the
recurrence times for all the elements of N effectively:
Algorithm 5 (computation of recurrence times).
function recurrence_times
input:
G = (V,E): a directed graph

begin
for each v ∈ V :

for each u ∈ V :
Dvu := length of the shortest path in G from v to u

for each v ∈ V :
if (v, v) ∈ E then

rec(v) := 1
else

rec(v) := min{Dvu +Duv : u ∈ V }
end.

In this algorithm, one first computes the shortest paths from every vertex v ∈ V to
every other vertex u ∈ V . Then two possibilities are considered. If there exists a self-
loop from v ∈ V to itself then 1 is recorded as the recurrence time for v. Otherwise,
all the other loops go through some other vertex u ∈ V , and the shortest possibilities
are explored to determine an optimal non-trivial loop from v back to itself.
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Theorem 6 (correctness and complexity of computation of recurrence times). Algo-
rithm 5 called with a directed graph G = (V,E) computes the recurrence times for all
the vertices v ∈ V . It can reach this goal within as little as O(|V ||E| + |V |2 log |V |)
time and using O(|V |2) memory.

Proof. Let us first notice that Algorithm 5 computes the recurrence times for all the
vertices. Indeed, a cycle through a vertex v ∈ V is either a self-loop (of length 1), or a
cycle that runs through another vertex u ∈ V . Then the algorithm clearly computes
the minimum length of any nontrivial cycle that runs through v.

Let us now analyze the computational complexity of Algorithm 5. Dijkstra’s al-
gorithm can be used to compute simultaneously all the lengths of the shortest paths
that start at a fixed vertex v ∈ V . Its time complexity is O(|E| + |V | log |V |) when
implemented using the Fibonacci heap. Therefore, the time complexity of the first
loop is O(|V ||E| + |V |2 log |V |), because Dijkstra’s algorithm must be run for every
vertex v ∈ V as a source. The time complexity of the second loop is O(|V |2), because
its body is run for every v ∈ V , and the minimum is computed over all u ∈ V .

The memory complexity is O(|V |2), or even Θ(|V |2), because the entire matrix D
must be stored after having been computed in the first loop for the purpose of being
used in the second loop. �

Appendix B. Details of the automatic analysis of global dynamics in
the Chialvo model

This appendix gathers the technical details of application of the methods introduced
in Sections 3.1 and 3.2 to the Chialvo model of a neuron explained in Section 2. The
results are discussed in Sections 3.3–3.5.

The computations were carried out at the Centre of Informatics Tricity Academic
Supercomputer & Network (https://task.gda.pl/en/) on a cluster equipped with
Intel R© Xeon R© CPU E5-2670 v3 at 2.30GHz running 64-bit GNU/Linux with kernel
3.10.0. In the paper we report accumulated CPU time in terms of CPU-hours, and
we also indicate the maximum amount of memory used by each single process.

All the real numbers that we mention in the paper should be understood as ap-
proximations of the actual binary floating-point numbers stored in the computer. For
example, if we say that we set a parameter value to 0.1 then this means that the
actual value used in the computations was a binary representation of 0.1, which is
close but not exactly equal 0.1. Also, if we say that we obtained a value of 0.30
then this means that the actual number obtained was a binary floating-point number
whose approximation within the provided precision was 0.30, that is, the number was
in [0.295, 0.305].

An implementation of the proposed method for the analysis of global dynamics is
available at [27]. The software can run on a single computer or on a cluster, using
the parallelization scheme introduced in [26]; in particular, the software is capable
of using multiple CPU cores if run on a single machine in an appropriate way. The
software uses the Computer Assisted Proofs in Dynamics (CAPD) library [7, 18] for
rigorous numerics. Conley indices are computed using the Computational Homology
Project (CHomP) software [6] based on [16] with further improvements [24, 28, 29].

We applied this method to the system (1) in the following setup. We fixed the
parameters a := 0.89 and c := 0.28, and we made the two other parameters vary:
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(b, k) ∈ Λ1 := [0, 1] × [0, 0.2]. Our choice of the parameters and their ranges was
based on what Chialvo indicated in his paper [5]. We took the 100 × 100 uniform
rectangular grid in Λ1 to compute the continuation diagram.

Determining a bounded rectangular subset B of the phase space that contained the
constructed numerical Morse decomposition in its interior consisted of two steps. We
first did a series of numerical simulations to make sure that at least most prominent
attractors would be captured. For that purpose, we took 30 × 30 = 900 uniformly
spaced initial conditions from [0, 100]× [−100, 100], and we considered 11× 11 = 121
uniformly spaced parameter values from the ranges of interest. For each of the 121
parameter combinations, we iterated each of the 900 initial conditions 10,000 times by
the map, and then we analyzed the ranges of the variables for the next 100 iterations.
We found out that x ∈ [0.000, 7.102] and y ∈ [−0.575, 2.545]. In the second step, we
took B0 := [−0.1, 10] × [−5, 5], and we conducted low-resolution test computation
with the set-oriented analysis method, using the 256× 256 uniform grid in the phase
space (without computation of Conley indices to save time). This computation took
about 10 minutes on a laptop PC. The constructed numerical Morse sets for all the
parameter boxes considered were contained in [−0.022, 8.55]× [−4.54, 2.78]. We thus
took B := [−0.1, 9] × [−5, 3] for the final computation. We remark that it would
be ideal to obtain some bounds for the recurrent dynamics analytically, but the only
obvious bound in our case was x ≥ 0, and the absorbing region D+ determined in [9,
p. 1643] turned out not to contain all the recurrent dynamics we were interested in
and thus could not be used for our purpose.

Once the set B has been fixed, we conducted the computations with the 1024×1024
uniform rectangular grid in B. We explain that due to the gradual refinements scheme
[1, §4.2], the phase space must be subdivided into a d× · · · × d uniform rectangular
grid, where d is a power of 2. The computation completed within 29 CPU-hours, and
each process used no more than 1.8 GB of memory. All the numerical Morse sets fit
in [−0.003, 7.24] × [−1.35, 2.58]. Between 1 and 4 numerical Morse sets were found
in each numerical Morse decomposition, typically 1.24 ± 0.5 (average ± standard
deviation). Either one or two of them were attracting, typically 1.015 ± 0.122. The
sizes of the total of 12,378 Morse sets were between 1 and 106,978 grid elements,
typically 10,863 ± 19,065, with the median of 1,193. Ten continuation classes were
found, including one consisting of a single parameter box. The resulting continuation
diagram is shown in Figure 32, and the sizes of the constructed outer bounds for the
chain recurrent set are shown in Figure 33.

Since most changes in global dynamics appear to take place for a limited range
of k, we conducted an analogous computation with the range of parameters limited
to (b, k) ∈ Λ2 := [0, 1] × [0.015, 0.030] ⊂ Λ1. The set Λ2 was split into the 200 × 75
uniform rectangular grid. The computation took a little over 34 CPU-hours and
memory usage did not exceed 396 MB per process. All the numerical Morse sets were
contained in [0.015, 7.07]× [−1.33, 2.56]. The corresponding continuation diagram is
shown in Figure 5. Note, however, that obviously the colors assigned automatically to
the continuation classes differ from those shown in Figure 32. Unfortunately, this lack
of color match between different continuation diagrams is unavoidable. One of the
reasons is that one class in a diagram computed at some scale may split into two or
more classes in the diagram computed at a different scale; moreover, two classes may
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(a) (b)

(c)

(d) (e) (f) (g)

0.0 0.2 0.4 0.6 0.8 1.0
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k

Figure 32. Continuation diagram for the Chialvo model with a =
0.89, c = 0.28, and (b, k) ∈ Λ1 = [0, 1]× [0, 0.2] split into the 100× 100
uniform rectangular grid. The areas (a)–(g) correspond to the areas
marked with the same labels in Figure 5, but note that the colors are
different in most cases, because the colors are assigned automatically
to the classes by the software.

not be related by continuation even if the numbers and stability types of numerical
Morse sets are the same, so giving an impression that colors correspond to types of
dynamics might be deceiving.
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b

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

k

20000

40000

60000

80000

100000

Figure 33. The size of the union of all the numerical Morse sets found
in the phase space for the corresponding parameters in Λ1 in the Chialvo
model. The black lines indicate borders between different continuation
classes; see Figure 32 for the corresponding continuation diagram.

Appendix C. Attractor sizes in numerical simulations

In order to find regions of parameters for which chaotic attractors might exist, we
conducted the following numerical simulations aimed at detecting large attractors.

We took a set of evenly spaced 400 × 400 values of (b, k) ∈ Λ3 = [0, 0.5] ×
[0.017, 0.027]. For each of these parameter values, with a := 0.89 and c := 0.28
fixed, we computed four trajectories in the Chialvo model (1), starting at (0.01, 0.01),
(1.0, 1.0), (10.0, 2.0), and (2.0, 10.0), respectively. We discarded the first 10,000 iter-
ations of each trajectory in order to make it settle on a hypothetical attractor, and
then we recorded the results of the next 10,000 iterations. In this way, for each of the
400× 400 values of the parameters (bi, kj) ∈ Λ3, we obtained four sequences of points
indexed by l = 1, . . . , 4. Let Ai,j,l denote the union of the points in each sequence.
Each of the sets Ai,j,l serves as a numerical approximation of some attractor found in
the system.

We were interested in measuring the size of each attractor that we found, in hope
for numerically detecting some chaotic attractors. For that purpose, we applied an
approach similar to one step of the computation of Hausdorff dimension of the set.
Namely, we considered the uniform rectangular grid G at the resolution 4 × 4 times
finer than in the computation upon which Figure 27 was based. For each set Ai,j,l,
we constructed the collection Ni,j,l of those boxes in G that contain at least one point
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from Ai,j,l. The set Ni,j,l could be understood as the minimal covering of Ai,j,l with
respect to G, or a plot of Ai,j,l at the resolution defined by G. We then computed
Ci,j,l := cardNi,j,l. In Figure 34, we show the value of Ci,j := max{Ci,j,l : l = 1, . . . , 4}
for each parameter selection (bi, kj) separately.

Let us now refer to Figure 21 with the four types of orbits present in the Chialvo
model. Note that computing the diameter of the constructed attractor alone would
not be very helpful in distinguishing between these types, because a periodic spiking
oscillation would yield similar values as a chaotic attractor. This is why we computed
the cover Ni,j,l instead. Indeed, the seemingly chaotic orbit shown in Figure 21 in
blue fills a large area in the phase space, and thus would yield a large value of Ci,j,l.
In contrast to this, the long periodic orbit shown in that figure in red would yield a
moderate value of Ci,j,l.

To sum up, we consider it justified to use the results of these simulations in Section 5
as a reference to the regions of parameters where chaotic dynamics might be present.
Although this is not strictly proof, one can call it strong numerical evidence.

0.0 0.1 0.2 0.3 0.4 0.5
b

0.017

0.018
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k
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2000

3000

4000

5000

6000

Figure 34. Maximal size of a cover of an attractor found in numer-
ical simulations for the Chialvo model (1) with a = 0.89, b ∈ [0, 0.5]
(horizontal axis, 400 individual values), c = 0.28, and k ∈ [0.017, 0.027]
(vertical axis, 400 individual values). The black lines indicate borders
between different continuation classes.
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