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Abstract

We develop algorithms and techniques to compute rigorous bounds for finite pieces of
orbits of the critical points, for intervals of parameter values, in the quadratic family of
one-dimensional maps fapxq “ a ´ x2. We illustrate the effectiveness of our approach
by constructing a dynamically defined partition P of the parameter interval Ω “ r1.4, 2s
into almost 4 million subintervals, for each of which we compute to high precision the
orbits of the critical points up to some time N and other dynamically relevant quantities,
several of which can vary greatly, possibly spanning several orders of magnitude. We also
subdivide P into a family P` of intervals which we call stochastic intervals and a family
P´ of intervals which we call regular intervals. We numerically prove that each interval
ω P P` has an escape time, which roughly means that some iterate of the critical point
taken over all the parameters in ω has considerable width in the phase space. This suggests,
in turn, that most parameters belonging to the intervals in P` are stochastic and most
parameters belonging to the intervals in P´ are regular, thus the names. We prove that the
intervals in P` occupy almost 90% of the total measure of Ω. The software and the data is
freely available at http://www.pawelpilarczyk.com/quadr/, and a web page is provided for
carrying out the calculations. The ideas and procedures can be easily generalized to apply
to other parametrized families of dynamical systems.
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§Paweł Pilarczyk, Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, ul. Gabriela

Narutowicza 11/12, 80-233 Gdańsk, Poland; pawel.pilarczyk@pg.edu.pl

1

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
12

82
2

http://www.pawelpilarczyk.com/quadr/


In the 1970s Robert May introduced the logistic family of one-dimensional maps as
an example of a simple mathematical model which nevertheless exhibits extremely com-
plex behaviour. Since then, the logistic family and the very closely related quadratic family
have become an icon of Chaos Theory. Notwithstanding some very deep analytic and ab-
stract results obtained over the last several decades by top mathematicians, and extensive
numerical studies by physicists and nonlinear dynamicists, starting from Feigenbaum,
there are literally only a handful of rigorous concrete numerical results. This is not too
surprising because it is indeed the essence of the chaotic dynamics on these families which
makes them numerically very challenging. In this paper we develop some rigorous nu-
merical techniques for studying the quadratic family and obtain several interesting “sta-
tistical” results about how often certain dynamical situations occur in parameter space.
In particular, we conclude that stochastic-like dynamics is likely to occur for almost 90%
of parameters. Our research is motivated by a specific ambitious project to identify true
chaotic dynamics in the family. However, our techniques can certainly be easily adapted
to a large variety of situations.

1 Introduction
The rigorous computation of orbits of dynamical systems is well known to be very delicate due
to inevitable approximation errors caused by the fact that computers work with only a finite set
of “representable” numbers, such as the 64-bit floating point numbers following the IEEE 754
standard [10], implemented in most modern processors. A standard and effective way to deal
with this problem is to use interval arithmetic [20, 25] to obtain rigorous bounds for the iterates
of a single point, which can be made arbitrarily sharp by paying the price in computing time. The
situation can, however, get significantly more complicated if we need to bound the images of an
“ensemble” of points or the images of a single point for different parameter values. The purpose
of this paper is to illustrate some of the problems and provide computational techniques to
address them. We focus on a particular case which is motivated by a bigger and more ambitious
project, as explained below. However, similar problems appear in more general situations, and
our approach should be relatively straightforward to apply in other settings.

1.1 The quadratic family
We consider the classical quadratic family of one dimensional maps given by

fapxq “ a´ x2 (1)

and restrict ourselves to parameters a P Ω :“ r1.4, 2s, since the dynamics of fa is essentially
trivial and well understood for a R Ω, and initial conditions x P Ia, where the interval Ia depends
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continuously on the parameter a and has the property that fpIaq Ď Ia, and that the iterates of
all the points x R Ia converge to ´8. The existence of Ia follows by elementary observations
and its properties imply that any non-trivial dynamics is contained in Ia.

Let ω Ď Ω be an arbitrary parameter interval. Formally, we could even take ω “ Ω, but in
general our calculations are most effective for quite small intervals. In the computations to be
given below as an illustration of our methods, we will construct dynamically a partition of Ω
into subintervals ω whose length varies from an order of 10´3 to as small as 10´10. Let c denote
the critical point 0 of fa. For each n ě 0, we let

cnpaq :“ fna pfapcqq and ωn :“ tcnpaq : a P ωu. (2)

Notice that the critical value c0paq equals a; therefore, ω0 coincides with ω. For n ě 1, cnpaq is
simply the n’th image of the critical value and ωn is the interval given by the n’th images of the
critical values for all the parameters a P ω.

The first and main objective of this paper is to describe and implement effective com-
putational techniques to obtain arbitrarily sharp and rigorous approximations for ωn under a
verifiable technical assumption (9) to be given below. We will also describe arguments to obtain
rigorous bounds on a few other relevant dynamical quantitities. These objectives are motivated
by a bigger project that we discuss in the following subsections. In Section 2 we present and
discuss the results arising from our computations. In Section 3 we give a relatively detailed
overview of the computational strategies used to achieve our goals, and in Section 4 explain
how these are used to construct the dynamically defined partition P . In Section 5 we give all the
details of the computational procedures and explain how we are able to ensure rigorous bounds,
and in Section 6 we give details of the algorithms. The source code of the software, programmed
in C++, is freely available at the website [22], which also features a user-friendly interface to
run the software directly from the web browser. The data resulting from our computations is
published in [23].

1.2 Regular and stochastic dynamics
The specific approach developed in this paper concerns calculations of quantities of very general
interest, in a variety of settings relevant to anyone studying dynamical systems from a numerical
point of view. In our case, they are directly motivated by a more ambitious long-term research
programme whose main interest lies precisely in the subtle and non-trivial synergy between
rigorous computational methods and more standard analytic, geometric and probabilistic math-
ematical arguments. In this section we outline the main features and goals of this programme
and emphasize the crucial role of the computational methods introduced in this paper.

The quadratic family (1) of one-dimensional maps is possibly one of the most studied
families of dynamical systems. It contains a mind-boggling richness of dynamical phenomena,

3

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
12

82
2



which has still not been completely classified or understood, and the dependence of the dy-
namics on the parameter is extremely complicated. It is known, however, that only two types
of dynamical phenomena occur with positive probability in the parameter interval Ω: regular
dynamics, where fa admits a unique attracting periodic orbit to which Lebesgue almost every
x P Ia converges, or stochastic dynamics, where fa admits a unique invariant probability mea-
sure µa to which the ergodic averages of Lebesgue almost every point x P Ia converge (in a
very “chaotic” way, thus the term “stochastic-like”). In other words, the union of the two sets

Ω´ :“ ta P Ω : a regularu and Ω` :“ ta P Ω : a stochasticu, (3)

has full measure in Ω [19, 2]. It is also known that Ω´ is open and dense in Ω [8, 17, 18] and
therefore Ω` is nowhere dense, but has positive Lebesgue measure [11, 3]. A natural question
is:

Given an explicit parameter a P Ω´ Y Ω`, can we decide if a P Ω´ or a P Ω`?

It turns out that for most parameters in Ω´ Y Ω`, this is an extremely difficult question, and
the set Ω` is in fact formally undecidable [1]. Nevertheless, some results do exist. Rigorous
computer assisted arguments have been developed in [24] to explicitly compute intervals of
parameters belonging to Ω´. These arguments have been applied, at the cost of an equivalent of
a whole year of CPU time, to the logistic family gλpxq “ λxp1´ xq to show that at least 10.2%
of parameters in a parameter interval roughly corresponding to our interval Ω belong to Ω´;
these parameters apparently consist of almost 5 million subintervals corresponding to regions
with associated attracting periodic orbits of period up to about 30,000. An improved method
was later applied in [6] to obtain a slightly better estimate with considerably lower computation
time. The logistic family is in fact smoothly conjugate by an explicit formula to the quadratic
family (1) and so in principle the periodic windows for the quadratic family can be known
explicitly by taking images of those computed for the logistic family. Since the conjugacy is
nonlinear, an estimate of the corresponding measure is non trivial, and will be computed in a
future paper, though it turns out to yield very similar estimates, thus leaving almost 90% of
parameters unaccounted for; indeed, the results we present below are very much aligned with
this figure.

Approaching the problem from the other side, notwithstanding the impossibility in general
to establish that a given parameter a belongs to Ω`, it may be possible to assign a well-defined
lower bound to the probability that a P Ω`. Suppose, for example, that ω is a small neighbour-
hood of the parameter a in Ω and that, letting ω` :“ ω X Ω`, we could show that |ω`| ě η|ω|
for some η P p0, 1q. Then we could say that the probability that a P ω` is at least η. The
very first proof that |Ω`| ą 0 goes back to Jakobson [11], after which there have been many
generalizations [3, 4, 14, 15, 21], all based on a combination of analytic, combinatorial and
probabilistic arguments which imply that for some sufficiently small neighbourhood ω of some
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“good” parameter value a˚ we have |ω`| ą 0. However, none of the papers cited provides any
explicit lower bound for the measure of ω`.

In [12], Jakobson extended the arguments developed in [11] towards a more explicit and
quantitative formulation, and designed an algorithm to estimate rigorously from below the mea-
sure of stochastic parameter values in quadratic and similar smooth families of unimodal maps.
It is worth noting that this is not simply a matter of “keeping track of the constants” but requires
a reformulation of some of the starting conditions of the results in order to make them compu-
tationally verifiable, and a corresponding modification of the arguments. The actual implemen-
tation of such an algorithm was however first carried out in [16], using arguments more closely
related to [3, 4], where it was shown that 97% of parameters in the interval ω :“ r2´10´4990, 2s
are stochastic, thus implying that |ω`| ě 0.97¨10´4990 ě 10´5000. This is of course an extremely
small lower bound and undoubtedly very far from optimal in terms of the overall measure of
stochastic parameters in Ω` , but notwithstanding several preliminary announcements, it still
remains to this day the only explicit and rigorous bound available. In Section 1.3 we briefly
outline a possible strategy for extending the arguments of [16] to other parameter intervals in Ω
and explain how the results and calculations presented in this paper form part of this strategy.

1.3 Computable starting conditions
Extending the methods introduced in [16] to other parameter intervals in Ω requires non-trivial
computer-assisted calculations in order to verify some explicit starting conditions, which were
verified analytically in [16] by choosing a very small neighbourhood of the special parameter
value a˚ “ 2. It is beyond the scope of this paper to give a complete and precise list of the
quantities which need to be calculated, so we refer the reader to [16] for the full technical details.
Here we limit ourselves to a heuristic (and incomplete) overview which we hope nevertheless
helps to get a preliminary idea and to motivate the results presented in this paper.

We suppose first of all that we have fixed a parameter interval ω Ď Ω. Some conditions,
labelled as (A1)-(A4) and involving a number of constants, are formulated in [16] where it is
proved that if these conditions are satisfied for a set of constants which satisfy certain inequal-
ities, then an explicit formula gives a rigorous lower bound for the proportion of stochastic
parameters in ω. A crucial and non-trivial aspect of the result is that the required conditions
(A1)-(A4) are all verifiable and the corresponding constants are computable, albeit by highly
non-trivial computations, in finite time and with finite precision (unlike the starting conditions
of the generalizations of Jakobson’s Theorem mentioned above, apart from some very excep-
tional cases).

The first two conditions, (A1) and (A2), are by far the most important, while (A3) and (A4)
can be considered “technical” and may possibly even be relaxed to some extent. We therefore
focus on the first two. Without going into the precise formulation of condition (A1) we mention
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that it involves the choice of a constant δ ą 0 which defines the critical neighbourhood

∆ :“ p´δ, δq. (4)

Notice that the critical point c “ 0 is a critical point for all parameter values a and thus ∆
can be chosen independently of the parameter a. Condition (A1) then essentially says that there
exists a constant λ ą 0 such that the derivative |pfkq1pxq| of any initial condition x is growing
exponentially with exponential rate λ, i.e. |pfkq1pxq| ě Ceλk for some constant C ą 0 inde-
pendent of x, as long as the images of x stay outside the critical neighbourhood, i.e. as long as
x, fpxq, ..., fk´1pxq R ∆. This is a highly non-trivial condition if δ is small (which it needs to
be in order for the overall argument to work) since the orbit of x can still pick up some very
small derivatives even outside ∆. It can be verified analytically in “sufficiently small” parameter
neighbourhoods ω (whose size is however not explicitly known) of “good” parameters a˚ de-
fined by conditions which are in general also not explicitly verifiable. The only option to verify
this condition in general parameter intervals ω is therefore by direct and explicit computation.
Rigorous algorithms and computational techniques for this purpose were developed in [5, 7]
based on the construction of some relevant weighted directed graphs.

The exponential growth of the derivative outside the critical neighbourhood ∆ is an open
condition in parameter space and is in itself compatible with pretty much any kind of overall
asymptotic dynamical behaviour. Indeed, as mentioned above, the set Ω´ is open and dense
in Ω and therefore any interval ω will contain a non-empty (in fact open and dense) subset of
regular parameters which admit an attracting periodic orbit. Our objective however is to show
that ω also contains stochastic parameters and indeed to obtain a lower bound for the proportion
of stochastic parameters in ω. By standard results, a sufficient condition for a parameter a to
be stochastic is the Collet-Eckmann condition that the derivative along the orbit of the critical
value c0 :“ fapcq is growing exponentially fast, i.e. that there exist constants C, λ ą 0 such
that |pfnq1pc0q| ě Ceλn for every n ě 1. If condition (A1) discussed above holds, then this is
satisfied as long as the orbit of the critical value stays outside ∆ for all iterates, which can and
does indeed happen but only for an exceptional set of parameters of zero Lebesgue measure. To
obtain meaningful results we cannot therefore avoid having to deal with returns of the critical
value to the critical neighbourhood, and in fact to returns which may come arbitrarily close to
the critical point. In these cases it is impossible to verify the Collet-Eckmann condition compu-
tationally because it is not implied by any finite time condition and therefore we would need to
check directly the derivative for an infinite number of iterates. We remark that there exist also
weaker sufficient conditions for the parameter a to be stochastic, in some cases it is for exmaple
sufficient to show that |pfnq1pc0q| Ñ 8, but they are still all not computationally verifiable since
they are all asymptotic conditions that cannot be checked in any finite number of iterations. This
is essentially the reason why stochastic parameters are undecidable, as mentioned above, and
why they occur as Cantor sets and not open sets of parameters.
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The strategy, first developed by Jakobson, and refined in subsequent papers to deal with the
situation described above, is to set up a probabilistic argument based on two fundamental facts.
The first, which is relatively elementary, is that the exponential growth of the derivative for
the critical orbit is implied by a bounded recurrence condition on the critical orbit, essentially
something of the form |cn| ě e´αn for all n ě 1 and for some sufficiently small α ą 0 (in
fact a little bit more is needed but this gives the main idea). This condition allows the critical
point to be recurrent, i.e. to have arbitrarily close returns, but in a sufficiently controlled way,
and also suggests that one way to establish abundance of stochastic parameters is to show that
many of them have bounded recurrence. Based on this observation, the second, and much more
sophisticated, key part of the strategy is to show that the intervals ωn, which are precisely the
union of images cnpaq of the critical points for the parameters in ω, tend to grow (exponentially
fast), implying that the points cnpaq are sufficiently “spread out” in the phase space and thus
only a very small proportion can actually come close to the critical point and fail the bounded
recurrence condition.

The growth in size of the intervals ωn is thus an essential ingredient in all the proofs of
all variations of Jakobson’s Theorem. The proof of this fact is very involved and requires a
combination of several techniques, including some combinatorial, analytic and probabilistic
arguments, which themselves however rely on features of the dynamics corresponding to the
parameters in ω. It turns out that the uniform expansivity outside the critical neighbourhood ∆,
as formulated in condition (A1) and as mentioned above, is one of the two most crucial features
required. The second is formulated in condition (A2) which uses the definition of escape time
which we formulate here in a slightly simplified form as follows.

Definition 1.1. N is called an escape time for ω if the following holds:

ωi X∆ “ H for all 0 ď i ă N, and |ωN | ě
?
δ. (5)

This says that all intervals ωn remain outside the critical neighbourhood (and thus in par-
ticular “benefit” from the expansivity provided by (A1)) up to time N and that they grow to
“large scale” (in this case defined as

?
δ but this can be flexible) at time N . The wording “es-

cape time” is purposefully borrowed from [4] and later generalizations such as [14, 15, 16], and
attempts the capture the idea, mentioned above, that the large size of the interval ωN implies
that most images do not fall close to the critical point and therefore “escape” the constraints of
the bounded recurrence condition.

We remark that the foreseen future applications of our estimates to the general problem
of the measure of stochastic parameters, and the actual formulation of condition (A2) requires
N to be “sufficiently large” depending on the other constants involved, such as the size of the
critical neighbourhood ∆ and the expansivity exponent λ. The main goal of this paper is for
the moment more limited and is to develop the computational techniques to construct a large
number of (small) parameter intervals which have an escape time at some (possibly large) value
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of N . The verification of an escape time requires the computation of rigorous enclosures (we
give the precise definitions below) of the sequence of intervals ωi for 0 ď i ď N . For these
reasons, the main technical part of this paper consists of the development of some very efficient
and effective procedures for estimating the precise location and size of intervals ωi.

In view of future applications to parameter exclusion arguments, but also out of indepen-
dent interest, we compute some additional quantities related to an interval ω and an escape
timeN . A first obvious quantity of interest is the accumulated derivative along the critical orbit.
We will compute bounds for this and thus introduce the following notation:

pfnq1pωq :“

„

inf
aPω
pfna q

1
pc0paqq, sup

aPω
pfna q

1
pc0paqq



. (6)

Also of great interest is the way in which the iterate cnpaq of the critical point depends on the
parameter. To study this dependeance, by some slight abuse of notation, let cn : ω Ñ ωn denote
the map a ÞÑ cnpaq. The map cn is smooth with respect to a because the family fa depends
smoothly on the parameter, and so we let c1npaq denote the derivative of cn with respect to the
parameter (which is crucial in the parameter exclusion argument). Then we let

c1npωq :“

„

inf
aPω

c1npaq, sup
aPω

c1npaq



. (7)

Also of interest, for less obvious and more technical reasons, in the parameter exclusion argu-
ments, is the ratio between the derivatives with respect to the parameter and with respect to the
phase space variable. We will therefore also compute the following quantities:

c1n
pfnq1

pωq :“

„

inf
aPω

c1npaq

pfna q
1pc0paqq

, sup
aPω

c1npaq

pfna q
1pc0paqq



. (8)

Notice that bounds for (8) can be easily derived from bounds for (6) and (7) but these may be
quite far from optimal as there is no reason a priori for the lower and upper bounds in (6) and
(7) to be attained for the same parameters. We will therefore compute bounds for (8) directly.

2 The Results
We now present and discuss the data obtained by our computations. In subsections 2.1 and 2.2
we give a short overview of the procedure for subdividing the parameter space Ω into a po-
tentially large number of smaller subintervals. Then in the remaining subsections we give the
statistics of several measurements which we carry out for these intervals. The raw data gener-
ated by our software is available in [23].
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2.1 Stochastic and regular intervals
One of the results of our computations consists of a finite partition P of Ω made up of almost
4 million explicit subintervals of Ω. We will write P as the union of two disjoint subsets

P` “ t“stochastic” intervalsu and P´ “ t“regular” intervalsu

according to some rigorous and computationally verifiable properties of each interval. The con-
struction of the partition P depends on certain parameters of which the most important is the
constant δ ą 0 which defines the critical neighbourhood ∆, see (4). Recalling the notion of
escape time in (5), given any N0 ě 1, we will construct the collection of intervals P` so that

for each interval ω P P` there exists an escape time N ě N0 for ω.

The collection P´ then consists simply of intervals for which the existence of such an escape
time cannot be verified or, for whatever reason, is not verified in our computations.

The terminology “regular interval” and “stochastic interval” is only heuristic but suggestive
of the fact that, while it is beyond the scope of this paper to prove this, it is reasonable to
expect that most parameters in regular intervals are regular and most parameters in stochastic
intervals are stochastic, as defined in (3). For regular intervals this expectation is based on
the data we compute, see discussion at the end of Section 2.3. For stochastic intervals this
expectation is based on the arguments [16], see discussion in Section 1.3, and its verification is
work in progress.

The purpose of this section is to describe the structure and properties of P` and P´ for a
particular choice of δ and N0, namely

δ “ 10´3 and N0 “ 25.

This particular choice of values is just for definiteness and does not have a particular meaning.
Our main goal is to show the kind of information that can be obtained by our computations. In
particular, we will give rigorous estimates for the total measure of intervals in P` and P´, as
well as information about the distribution of the sizes of intervals, the computed values ofN , the
sizes of ωN , and other interesting information. The computations could just as well be carried
out for any other values of δ and N0, though they are clearly more intensive and “expensive”
for smaller values of δ and larger values of N0.

2.2 Basic strategy
An important part of our approach is that P` and P´ are dynamically defined. We do not just
try to verify the escape time condition in some a priori given subdivision of Ω, but rather use
dynamical information to subdivide the parameter space Ω in an efficient way. This makes a
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significant difference in terms of maximising the measure of intervals in P` and obtaining
much more meaningful results. We describe this construction in detail in Section 4. There are
several non-trivial technical aspects to be addressed, especially in order to guarantee that all our
estimates are rigorous, but the general strategy is actually very simple and we sketch it here.

We start with the entire parameter space ω “ Ω and consider the iterates ωi until they hit ∆
at some time n ě 1 (that is, ωnX∆ ‰ H). Then we chop ω into (at most 3) closed subintervals
ω “ ω` Y ω∆ Y ωr (the left, middle, and right parts) with disjoint interiors in such a way that
ω`nX∆ “ H and ωrnX∆ “ H, and thus ωnX∆ Ă ω∆

n . We let ω∆ P P´ and no longer consider
any of its further iterations. If ω` is too small (according to some criteria specified precisely in
Section 4.2), we also let it belong to P´ and stop iterating; the same with ωr. Otherwise, we
continue iterating ωl and ωr until they hit ∆, and then we repeat the procedure. Every time an
interval hits ∆, we verify whether n ě N0 and the escape time condition holds. If this happens
then we let the interval belong to P` and stop iterating this interval. Moreover, if it is detected
at any time during the computation of the iterates ωi that certain other conditions are met which
suggest that none of further iterates of ω is likely to lead to an escape time, we let the interval
belong to P´ and stop iterating.

It is clear from the description of the construction that the collections P` and P´ do not
depend canonically on the choices of δ and N0. Moreover, they also depend on some other
choices; for example, on the level of binary precision p chosen for the computations, which
we set as p :“ 250, on the minimum size w (relative to Ω) of an interval to consider it worth
iterating, which we set as w :“ 10´10, and some other values relevant to the construction, as
explained in detail in Section 4. For the escape condition,we use the bound |ωN | ě 0.0317 ą?
δ. In a future paper we plan to analyse systematically the effect of changing these variables

of the construction, but preliminary experiments indicate that while different choices may of
course lead to quite different intervals being constructed, the overall statistics are remarkably
stable and do not depend in a sensitive way on these choices, provided that we do not impose
too severe restrictions on the computations, such as taking the precision p too low or the relative
size w too large.

The computations were completed using the software described in Section 6.5 and available
at [22]. They were completed within 35 minutes on a personal laptop computer with the Intel R©

CoreTM i5-8265U processor. The results of the computations are available in [23].

2.3 Measure of regular and stochastic intervals
The partition P obtained by our computations is made up of the disjoint union of the fami-
lies of P` and P´ made up respectively of stochastic intervals, which satisfy the escape time
condition (5), and regular intervals, for which this condition was not verified. The fundamental
quantities of interest are therefore the number and total measure of the intervals in each family.
The first and most striking observation is that
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almost 90% of parameters belong to stochastic intervals.

This means that 90% of parameters belong to intervals which have an escape at some relatively
large time N ě 25 (and are therefore good candidates for the parameter exclusion arguments).
More precisely, letting #P denote the cardinality of the partition P and, by some slight abuse
of notation, letting |P | denote the total measure of intervals in P , we have the following results.
The partition P is formed by almost 4 million intervals or, more precisely,

#P “ 3,969,763 and |P | “ 0.6 “ |Ω|.

Of these, about 36% in number and 90% in measure are stochastic, more precisely

#P` “ 1,436,063 ě 0.36#P and |P`| ě 0.539934844013 ě 0.89989|Ω|,

and therefore

#P´ “ 2,533,700 ď 0.64#P and |P´| ď 0.060065155986 ď 0.10011|Ω|.

In the following subsections we analyse in detail several properties of the family P` of
stochastic intervals, which are our main objects of interest. It is worth, dwelling a little bit here
on the collectionP´ of regular intervals, which also exhibit some very interesting features. First
of all, as many intervals in P´ are adjacent to each other (the same is also true in P`), it can be
useful to merge adjacent intervals and consider “connected components” of P´ which are a bit
less dependent on the specifics of the construction. In terms of these connected components, it
is interesting to observe that the total measure of P´is disproportionately concentrated on larger
intervals. The 100 largest components (actually made up of 1,124,307 intervals of P´) take up
a total measure of about 0.05726, which is 95% of the total measure of P´, and the 3 largest
components (made up of 11,830, 7,955 and 8,313 intervals respectively) alone take up more
than 30% of the total measure of P´. These largest 3 are contained in the following intervals:

I1 “ r1.75208241722, 1.77992046728s, |I1| “ 0.0278381,

I2 “ r1.47590994781, 1.48293277717s, |I2| “ 0.00702283,

I3 “ r1.62533272418, 1.63110961362s, |I3| “ 0.00577689.

In Figure 1, we have represented the ten largest connected components of P´ by red hori-
zontal bars to highlight how they match up remarkably well, albeit unsurprisingly, with the well
known periodic windows which appear in the standard bifurcation diagram. It would clearly be
interesting to prove that most parameters in regular intervals are indeed regular, perhaps adapt-
ing the techniques of [24]. For clarity and completeness, we remark that Figure 1 was created
by dividing Ω “ r1.4, 2s into 100 intervals ω1, . . . , ω100 of the same width 0.006. For each of
these intervals ωi, the corresponding blue bar shows the percentage of stochastic parameters in
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Figure 1: Distribution of the measure of stochastic parameters in Ω. Blue bars show the per-
centage of stochastic parameters in each of the 100 subintervals of Ω “ r1.4, 2s. Horizontal red
lines show the location of 10 largest connected components of P´. Bifurcation diagram for the
quadratic map is shown along the horizontal axis. More detailed discussion of this picture at the
end of Section 2.3.

ωi, that is, the measure of ωi X P`, where P` Ă Ω is the union of all the intervals in P`. The
height of a blue bar below 100% indicates that ωi intersects some intervals in P´. Note that
the height of the bars above a large periodic window in the bifurcation diagram (shown along
the horizontal axis) is zero if the corresponding ωi is entirely covered by intervals in P´. The
alignment of bars considerably lower than 100% with the periodic windows clearly shows how
the periodic windows contribute to P´. For example, from the graph (or actually from raw data
that was used to plot the graph) one can read that about 99.34% of the interval r1.988, 1.994s is
covered by P`, while only some 73.6% of the interval r1.94, 1.946s is covered by P`.

2.4 Distribution of sizes of stochastic intervals
We now focus on the family P` of stochastic intervals, which occupy almost 90% of the pa-
rameter space Ω and are our main objects of interest. Figure 2 shows the distribution of sizes
of stochastic intervals, which turns out to span several orders of magnitude of different scales.
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10 3 < | |
(5.2% measure)
17 intervals

10 4 < | | 10 3

(20.0% measure)
458 intervals

10 5 < | | 10 4

(30.7% measure)
6565 intervals

10 6 < | | 10 5

(22.7% measure)
44606 intervals

10 7 < | | 10 6

(15.6% measure)
281833 intervals

| | 10 7

(5.7% measure)
1102584 intervals

Figure 2: Distribution and number of stochastic intervals of different sizes

Most of the measure is taken up by “medium” to “small” intervals, whereas “large” intervals
(|ω| ě 10´3), and “very small” intervals (|ω| ď 10´7) each take up about 5% of the total mea-
sure. Notice that, perhaps also unsurprisingly, the number of very small intervals is more than
the number of intervals of all other sizes put together. This seems to suggest that, similarly to
the regular intervals, while the number of small intervals grows quite fast, it does not grow fast
enough to have a significant effect on the measure.

2.5 Distribution of escape times N
Figure 3 shows the distribution of escape times of stochastic intervals. Remarkably, more than
90% of the intervals, occupying more than 50% of the measure, escape at the very first opportu-
nity, with escape time N “ N0 “ 25. Most other intervals have escape times just slightly larger
than 25, with more than 99.7% of intervals, occupying 94% of the measure, having escape times
25 ď N ď 32. We, emphasize, however that there is a long “tail,” and intervals exist with much
higher escape times, up to a maximum of escape time N “ 199 for 73 distinct intervals in P`
taking up 0.00173% of the total measure of stochastic intervals.
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N = 25 (50.7%) 1287940 intervals

N = 26 (19.3%)
90365 intervals

N = 27 (12.5%) 34150 intervals
N = 28 (3.4%) 11615 intervals

N = 29 (4.0%) 4594 intervals
N = 30 (0.5%) 2037 intervals

N = 31 (3.0%) 1325 intervals
N = 32 (0.5%) 866 intervals

N 33 (6.0%) 3171 intervals

Figure 3: Distribution of escape times of stochastic intervals

| N| < 0.5
3444 intervals
(11.2% measure)

0.5 | N| < 1.0
6937 intervals
(11.9% measure)

1.0 | N| < 1.5
11804 intervals

(11.9% measure)

1.5 | N| < 2.0
24071 intervals

(16.3% measure)

2.0 | N| < 2.5
72022 intervals

(17.8% measure)

2.5 | N| < 3.0
88772 intervals

(10.9% measure)

3.0 | N| < 3.5
130214 intervals
(7.6% measure)

3.5 | N| < 3.9
386938 intervals
(9.7% measure)

3.9 | N|
711861 intervals
(2.7% measure)

Figure 4: Distribution of sizes of intervals at escape times
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2.6 Distribution of sizes of intervals ωN at escape times
Figure 4 shows another distribution, namely the sizes of the images ωN of stochastic intervals
at their escape times. The results are, in our opinion, quite unexpected and interesting even
though, given the unpredictable way intervals are regularly chopped as part of the construction
of the partition P , there seems to be no elementary heuristic argument for predicting the size
of ωN . Recall that by definition of escape time we always have a lower bound of 0.0317 Á

?
δ,

which is relatively small in relation to the interval Ia of definition of the map (which is 4 for
the “top” parameter a “ 2 and slightly less for other parameters). It seems therefore quite
remarkable that more than 99.7% of intervals, occupying almost 90% of the measure, have
relatively “macroscopic” size, with |ωN | ě 0.5. Even more, it turns out that intervals occupying
some 20% of the measure have “very large” images, i.e. |ωN | ě 3. In Section 4.4 we analyse in
detail the “personal history” of one, more or less randomly chosen, interval ω P P` with escape
time N “ 26 and such that |ωN | ě 3.5, in order to help understand the mechanism by which
this situation can occur.

Figure 4 reveals one more interesting piece of information. The first few pieces in the pie
chart show the measure of intervals ω that yield smaller ωN . Although their measure is consid-
erable, the actual number of intervals that yield this measure is not very big. For example, the
first 4 pieces that yield over 50% of the measure consist of only 44,256 individual intervals. On
the other hand, the last two pieces of the pie chart, corresponding to the largest |ωN |, comprise
as little as 12.4% of the measure, yet they consist of almost 1.1 million intervals. This shows
that there are many large intervals that yield small ωN and many tiny intervals that yield huge
ωN ; one could call it negative correlation between |ω| and |ωN |.

2.7 Accumulation of derivatives
Figures 5 and 6 show some results related to the computations of the space and parameter
derivatives, as in (6) and (7), These can be of significant interest in a variety of contexts, es-
pecially when they exhibit exponential growth, which is a non-trivial feature, given that some
iterates can be very close to the critical point where the derivative vanishes. In view of this fact,
and of the large variation in the escape times for stochastic intervals, it seems best to present the
data in the form of average exponential rate of growth along the orbits. Thus, for a stochastic
interval ω P P` with escape time N , and a parameter a P ω, we define

f̃Npaq :“
1

N
log |pfna q

1
pc0paqq| and c̃Npaq :“

1

N
log |c1Npaq|

and then, analogously to (6) and (7), we define

f̃Npωq :“

„

inf
aPω

f̃Npaq, sup
aPω

f̃Npaq



and c̃Npωq :“

„

inf
aPω

c̃Npaq, sup
aPω

c̃Npaq



.
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low(fN(a)) < 0.00
2293 intervals
(12.5% measure)

0.00 low(fN(a)) < 0.05
9865 intervals
(8.8% measure)

0.05 low(fN(a)) < 0.10
49080 intervals

(13.8% measure)

0.10 low(fN(a)) < 0.15
137185 intervals
(19.1% measure)

0.15 low(fN(a)) < 0.20
288577 intervals
(20.2% measure) 0.20 low(fN(a)) < 0.25

381275 intervals
(15.0% measure)

0.25 low(fN(a)) < 0.30
290900 intervals
(7.7% measure)

0.30 low(fN(a))
276888 intervals
(2.9% measure)

Figure 5: Distribution of the lower bounds on f̃Npωq computed for the stochastic intervals. The
highest encountered value was « 0.732.

low(cN(a)) < 0.00
4758 intervals
(7.0% measure)

0.00 low(cN(a)) < 0.05
17697 intervals
(15.2% measure)

0.05 low(cN(a)) < 0.10
76401 intervals

(19.7% measure)

0.10 low(cN(a)) < 0.15
184414 intervals
(20.9% measure)

0.15 low(cN(a)) < 0.20
334054 intervals
(17.4% measure)

0.20 low(cN(a)) < 0.25
355780 intervals
(12.9% measure)

0.25 low(cN(a))
462959 intervals
(6.9% measure)

Figure 6: Distribution of the lower bounds on c̃Npωq computed for the stochastic intervals. The
highest encountered value was « 0.716.
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upp(c′N( )/(fN)′( )) < 1.50
2734 intervals
(4.3% measure)

1.50 upp(c′N( )/(fN)′( )) < 1.60
36243 intervals
(15.4% measure)

1.60 upp(c′N( )/(fN)′( )) < 1.65
248315 intervals
(19.6% measure)

1.65 upp(c′N( )/(fN)′( )) < 1.75
1134431 intervals
(24.8% measure)

1.75 upp(c′N( )/(fN)′( )) < 2.00
10704 intervals

(12.2% measure)

2.00 upp(c′N( )/(fN)′( )) < 10.00
3473 intervals
(17.0% measure)

10.00 upp(c′N( )/(fN)′( ))
163 intervals
(6.6% measure)

Figure 7: Distribution of the upper bounds on the quotient of derivatives c1Npaq{pf
N
a q

1pc0paqq
computed for the stochastic intervals. The lowest encountered value was almost 1.2, the highest
was close to 1013.

Figure 5 shows the distribution of lower bounds computed for f̃Npωq. We note that for
12.5% of intervals in measure we do not have a positive lower bound, but this does not neces-
sarily mean that there is no exponential growth. Indeed, all these intervals have a positive upper
bound (not represented here) and it seems most likely that the lack of a positive lower bound is
due to overestimates caused by using interval arithmetic in evaluating these quantities. We also
note that there is a remarkably even distribution of lower bounds, with about 10-20% in measure
of parameter intervals in each band, except for the highest rates of growth above 0.3 which is
exhibited only by 2.9% of parameters. We mention, however, that higher rates are exhibited by
smaller fractions of parameters, all the way up to 0.732.

Figure 6 shows the corresponding statistics for c̃Npωq which turn out to be remarkably
similar to those for f̃Npωq. We note however that the close relationships between these values is
“real”, not just statistical, as demonstrated in Figures 7 and 8 which refer to the measurements
of the ratio (8) between these two quantities. Figure 7 shows the statistics of the upper bounds
for this ratio, and should be interpreted in conjunction with Figure 8 which gives upper bounds
for the distortion

D :“
supaPωt|c

1
Npaq{pf

N
a q

1pc0paqq|u

infaPωt|c1Npaq{pf
N
a q

1pc0paqq|u
.

It seems highly remarkable that this distortion very close to 1 in most of the intervals, both
in cardinality and in measure, and ă 1.5 and for more than 75% of intervals, both in cardi-
nality and in measure. This means that for most parameters the upper and lower bounds for
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upp( ) < 1.01
1384525 intervals
(34.7% measure)

1.01 upp( ) < 1.02
20784 intervals
(7.2% measure)

1.02 upp( ) < 1.05
15273 intervals

(10.6% measure)

1.05 upp( ) < 1.10
6580 intervals

(8.0% measure)

1.10 upp( ) < 1.50
6347 intervals

(15.6% measure)

1.50 upp( ) < 3.00
1698 intervals
(12.3% measure)

3.00 upp( ) < 10.00
698 intervals
(8.0% measure)

10.00 upp( )
158 intervals
(3.6% measure)

Figure 8: Distribution of the upper bounds on the quotient D computed for the stochastic inter-
vals. The lowest encountered value was slightly above 1, the highest was almost 400.

|c1Npωq{pf
N
a q

1pc0pωqq| are comparable and thus Figure 7 gives a good representation of its ac-
tual values. It seems therefore also highly remarkable that this ratio is ă 2 for over 75% in the
measure of parameter intervals.

3 The Computations
In order to cater for readers with different levels of familiarity with computational methods,
in Sections 3-6 we give increasingly detailed and technical description of the computational
procedures and algorithms used to obtain the results given in Section 2. We begin, in this section,
by explaining our general strategy for the computations, in a way that is easily accessible to
anyone with some familiarity with one-dimensional dynamics, emphasising nevertheless some
crucial but subtle aspects related to the need to obtain rigorous explicit bounds. In Section 4 we
give a detailed but non-technical explanation of the procedure for constructing the families of
intervals P´ and P` using the results of the calculations described in this section. In Section 5
we explain how the calculations can be formalised in order to work with computer representable
numbers and to yield rigorous bounds for all the quantities we compute. Finally, in Section 6
we describe precisely the algorithms used to implement each step of the procedure.
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The computations can be divided roughly into three categories, which we describe in the
following three subsections.

3.1 Iterating
The core challenge we address in this paper is the development of effective techniques for the
computation of intervals ωn :“ tcnpaq : a P ωu, for some given parameter interval ω Ď Ω.

The first step in this direction is clearly the development of effective techniques for the
computation of the point cnpaq :“ fna pc0paqq “ fna paq for a fixed parameter a P ω (recall that
c “ 0 and so c0paq “ fapcq “ a). This is already non-trivial since the value of a may not be
computer representable and therefore require an approximation strategy before we even begin
iterating. Even if a is representable, its first image c1paq :“ fapaq “ a´ a2 is very possibly not
representable, and similarly for higher iterates. Fortunately, tried and tested methods, known
as interval arithmetic [20, 25], exist and can be very effective for these kinds of computations.
They consist essentially of enclosing the point to be iterated in a small interval whose endpoints
are representable numbers, and then applying the map to this interval to obtain a rigorous en-
closure, and therefore an approximation, of the image of the given point. The method of course
gives increasingly large enclosures, and therefore increasingly poor approximations, for higher
iterates cnpaq but these can still be obtained to any desired precision for a fixed n by increasing
the computer precision and therefore the cardinality, and “density”, of the set of representable
numbers. For example, in the calculations in Section 2 we work with about 80 decimal places.

In principle we could blindly apply the interval arithmetic techniques also to the computa-
tion of the intervals ωn. Indeed, supposing for example that the parameter interval ω “ ra,bs
was given by endpoints which are representable numbers (here and below we will convention-
ally use bold type to denote representable numbers) and that the same was true of the interval
ωi :“ rai,bis for some i ě 0 (or that we had a representable enclosure of the interval ωi, this
does not make much of a difference for the discussion here). Then we could use interval arith-
metic to compute a rigorous enclosure for all possible values of a´x2 for all possible a P ω and
x P ωi, thus yielding a rigorous enclosure for ωi`1. It is easy to see, however, that this will very
likely produce huge overestimates of ωi`1, which would moreover compound at each iteration,
and is therefore not at all a very effective way to proceed. The reason for the overestimation is
due to the fact that this approach consists of iterating every point in ωi by fa for every parameter
a P ω, rather than iterating each point in ωi just by the corresponding parameter. The enclosure
for ωi`1 will therefore contain the points fapbiq and fbpaiq which may be much further apart
than necessary if, for example, ωi lies on the right of the critical point.

At first sight, there is an obvious solution to this problem, which is to simply iterate the
points corresponding to the endpoints a and b of the parameter interval ω, i.e., to compute the
points cnpaq and cnpbq. As mentioned above, the computation of these points can be easily
achieved to arbitrary precision. The problem, however, is that it is not necessarily the case that
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cnpaq and cnpbq are the endpoints of ωn even though a and b are the endpoints of ω, since the
map cn : ω Ñ ωn may fail to be injective, and if it is not injective then it may “fold” and one of
cnpaq or cnpbq may lie in the interior of ωn. We can resolve this issue if, recalling (7), we have

0 R c1npωq (9)

which implies that c1npaq ‰ 0 for every a P ω and therefore that the map cn is monotone on ω.
This implies that cnpaq and cnpbq are indeed the endpoints of ωn and therefore provides both
inner and outer enclosures of ωn to arbitrary precision.

We emphasize that (9) cannot always be verified and that its verification is implicitly one
of the conditions required for a parameter interval ω to belong to P`. As mentioned above, the
collection P´ is formed by those intervals for which the escape condition cannot be verified, for
a variety of possible reasons, and failure to satisfy (9) is one of these reasons. We will describe
below the precise way in which we check (9), we just mention here that it will be done by a
simple inductive procedure. For n “ 0, we have c0paq “ a, and therefore c10paq “ 1 for all
a P ω. For n ě 1, we use the formula

c1npaq “ ´2cn´1paq ¨ c
1
n´1paq ` 1. (10)

If we have rigorous enclosures for both ωn´1 and c1pωn´1q then we can use (10) and standard
interval arithmetic computations to obtain a rigorous enclosure for c1npωq and check (9).

3.2 Differentiating
As mentioned in the introduction, we are also interested in computing rigorous enclosures for
the intervals pfnq1pωq and c1n{pf

nq1pωq defined in (6) and (8). For both intervals we use an
inductive procedure similar to that used for the calculation of c1npωq above. Specifically, by the
chain rule we have

pfna q
1
pc0paqq “ f 1apf

n´1
a pc0paqqqpf

n´1
a q

1
pc0paqq

“ ´2fn´1
a pc0paqqpf

n´1
a q

1
pc0paqq

“ ´2cn´1paqpf
n´1
a q

1
pc0paqq

(11)

and therefore, using interval arithmetic, rigorous enclosures for ωn´1 and for pfn´1q1pωq imme-
diately yield rigorous enclosures for pfnq1pωq. Similarly, (10) and (11) imply

c1npaq

pfna q
1pc0paqq

“
c1n´1paq

pfn´1
a q1pc0paqq

`
1

pfn´1
a q1pc0paqq

(12)

and therefore, rigorous enclosures for c1n´1{pf
n´1q1pωq and for pfn´1q1pωq yield a rigorous en-

closure for c1n{pf
nq1pωq. Notice that an enclosure for c1n{pf

nq1pωq could also be computed di-
rectly from the enclosures of c1n and pfnq1 by taking the worst case bounds, but the bounds we
compute here, using (12) inductively, are clearly much sharper.

20

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
12

82
2



3.3 Chopping
Finally, we discuss in a bit more detail, the chopping procedure described briefly at the end of
Section 2.1 leading the the construction of the partition P . As described there, the basic strategy
is very simple and intuitive, chopping intervals which hit the critical neighbourhood ∆, say at
some time n ě 1, into subintervals which either land outside ∆ and can be iterated further,
or continue to intersect ∆ and therefore belong to P´. The computational problem is simply
stated and consists of finding the boundary between the parameters which fall into ∆ and those
which do not. While we can have a very good approximation of the entire interval ωn following
the procedure described in Section 3.1, this is based on computation of the endpoints and does
not help in identifying the parameters in the interior of ω whose images fall into a particular
position, such as close to the boundary of ∆. The map cn : ω Ñ ωn is not affine and therefore
we cannot directly recover the parameters in ω which map to the boundary points of ∆ under
cn, even knowing with a good degree of accuracy the position of the boundary points of ωn.

Our approach is to use a relatively straightforward variant of the numerical algorithm
known as the bisection method (see e.g. [13, §3.1]). In order to explain this approach, let us fix
ω “ ru, vs and n ą 0. Assume condition (9) holds true, and ωn X∆ ‰ H. Assume cnpuq R ∆.
For simplicity of notation, assume cn is increasing. To make the idea clear, let us ignore round-
ing errors for the moment and assume the computations are exact. We are going to construct
inductively two sequences of numbers txiu and tyiu, with xi ă yi and |yi ´ xi| “ 2´i|v ´ u|,
with the following property: cnpru, xisq X ∆ “ H and cnpru, yisq X ∆ ‰ H. In this way, by
computing consecutive elements of the two sequences, we are going to get a gradually better
approximation of c´1

n p´δq. Set x0 :“ u and y0 :“ v, which satisfies the required properties.
Now assume xi and yi have been constructed. Take ti`1 :“ pxi ` yiq{2, and compute cnpti`1q.
If rcnpuq, cnpti`1qs X∆ “ H then set xi`1 :“ ti`1 and yi`1 :“ yi. Otherwise, set xi`1 :“ xi`1

and yi`1 :“ ti`1. It is straightforward to see that the new elements xi`1 and yi`1 also satisfy the
properties. Take the interval ru, xks for some relatively large k ą 0, e.g., k “ 30, for one of the
subintervals, say ω`. Repeat the same for the other endpoint of ω to obtain the other subinterval
ωr, provided that cnpvq R ∆.

We remark that the convergence of the bisection method is exponential; for example, after
30 steps, the size of the new interval is computed with the precision of 2´30 « 10´9 relative
to the size of the original interval, which may be satisfactory in most cases. The computation
of each step is fast, because it consists of computing cn for a single point. The quantities dis-
cussed in the previous two subsections, computed along with the iterations of ω, can be used
further with the smaller intervals, or can be re-computed from scratch; in this paper we chose
the second option, because the computation is not very costly, and we can expect to get better
estimates for those quantities, due to the smaller interval ω. Finally, note that due to approxima-
tions and rounding, or different monotonicity of cn than assumed above, the actual procedure is
technically more sophisticated; we discuss the details in Section 5.
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4 The Partition
The construction of the partitionP , as mentioned above, is based on the computations described
in Section 3. However, the way these computations are combined to explicitly construct P is
non-trivial, and requires the introduction of some auxiliary constants, and various criteria on
when to stop the computations and on how to decide if an interval belongs to P´ or P`. We
describe heuristically, but in some detail, the overall scheme, and postpone to Section 6 the
precise formulation of the formal structure of the algorithms.

4.1 Defining a queue
The general principle underlying the construction of the partition P is quite simple and is out-
lined in Section 2.1. The construction relies in a fundamental way on the computations discussed
in Section 3 and essentially boils down to a combination of iterating and chopping parameter
intervals. We note, however, that this produces a large number (possibly millions!) of small
parameter intervals and some criteria need to be put in place regarding the order with which
we handle these intervals, at which point we stop iterating, and how we decide to assign such
intervals to either one of the families P` or P´. For that purpose, we use the notion of a queue.
In our setting this can be formulated in the following way. At any given moment we have a
partition P of Ω given by the union of three families of closed intervals with disjoint interiors:

P “ P` Y P´ Y Pq

where P` consists of stochastic intervals, P´ consists of regular intervals, and Pq consists of
intervals in the queue. Initially, the entire parameter space Ω is placed in the queue as a single
interval, and therefore we have

P “ Pq “ tΩu and P` “ P´ “ H. (13)

As the process runs, intervals in Pq get iterated and possibly chopped and, according to a set of
criteria which we are about to describe, the resulting subintervals are either assigned to P` or
P´, after which they are no longer iterated, or to Pq for possible further iteration. Eventually
we end up with a situation where

Pq “ H and P “ P` Y P´ (14)

at which point we consider to have concluded our construction. In the following subsections we
explain the precise mechanism and criteria for moving intervals from the queue into P` or P´
and adding intervals to the queue. We say that an interval is enqueued if it is added to the queue,
and it is dequeued if it is taken back from the queue.
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4.2 Processing the queue
The process of moving from the initial partition (13) to the final partition (14) requires several
actions and decisions based on the outcome of the computations described in Section 3. For
clarity, we subdivide our explanation of these actions and decisions in a few steps. We suppose
that ω P Pq is an interval in the queue and explain what we do with it and how we decide at
some point whether it belongs to P´ or P` or whether it gets chopped, at which point we need
to decide what to do with the remaining subintervals. We consider various cases.

The first and, in some sense, most important case, is when we are successfully able to
compute (approximate) iterates of ω up to some time n ě 1 for which ωn X∆ ‰ H (or, more
precisely, where the outer enclosure of ωn intersects ∆, thus indicating that ωn may intersect ∆).
We will consider two subcases.

(P1a) If ωn X∆ ‰ H, n ě N0 and the escape time conditions (5) hold, we let ω P P`.

This is the one and only situation where we are “successful” and place intervals in P`. In all
other cases below, possibly after subdividing the original interval, we will either “give up” on
one or more of the resulting subintervals and place them inP´, or save them for further iteration
by placing them back in the queue Pq.
(P1b) If ωn X ∆ ‰ H but n ă N0 or the escape time conditions (5) do not hold, then we
chop the interval ω according to the procedure described in Sections 2.1 and 3.3 (and in detail
in Algorithm 6.8). This chopping procedure subdivides ω into at most 3 disjoint subintervals
ω “ ω` Y ω∆ Y ωr such that ω`n X ∆ “ H and ωrn X ∆ “ H. We let ω∆ P P´ since
it intersects ∆ and therefore cannot ever satisfy the escape time conditions at any time in the
future. The decision about what to do with ω`, ωr depends on their size. If they are too small they
may contribute little to the final result, and thus one might consider processing them a waste of
the computational resources that could otherwise be assigned to investigating larger intervals.
We therefore introduce the variable w ě 0 to indicate the minimum width of an interval, relative
to the width of Ω, that we are willing to continue iterating. If the size of the subintervals is ě w
we place them back in the queue Pq, whereas, if their sizes are ă w we “abandon” them by
placing them in P´. The results described in Section 2 are based on a choice of w “ 10´10.

There are only two reasons for which we may fail to arrive at a situation where ωn X∆ ‰ H:
there may be some technical/computational issue which does not allow us to properly compute
the iterates of ω; or it may happen simply that we keep iterating ω and it just never hits ∆. In
the first case we distinguish again two subcases.

(P2a) It may happen, possibly due to overestimations caused by the rounding procedures, that
for some iterate n we may have 0 P c1npωq and/or 0 P pfnq1pωq (recall (7) and (6)). The first
case indicates a failure of the technical condition (9) which is required to continue iterating the
interval, and the second a failure of another technical condition which is required to verify some
properties of our calculations, see (25) in Theorem 5.2 below. In both these cases, rather than
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giving up on ω straight away, by placing it in P´, we bisect ω and consider the two resulting
halves of the interval. As in (P1b) we then consisder the size of these subintervals. If they are
larger than w “ 10´10 of the size of Ω we place them back in the queue P q, while if they are
smaller than w we place them in P´.

(P2b) A second technical issue which can arise is the situation where the lower and upper
bounds for the endpoints of ωn are further apart than the distance between the endpoints them-
selves. This situation is an effect of rounding errors introduced while evaluating the function fa
and suggests that the precision of representable numbers used for the computation is too low. If
this happens then we do not get any reasonable lower bound on the width of ωn, and therefore
iterating ω further is pointless; moreover, this situation is explicitly excluded at various steps of
our arguments, see (17) and (26). There is no way to improve the result, apart from choosing a
different precision of numerical computation (choosing a different set R of representable num-
bers). We therefore “abandon” such an interval by assigning it to P´. We note, however, that
due to the very high precision with which we work, the situation can only occur with extremely
small intervals, and therefore this does not seem to provide a significant loss in terms of measure
of intervals which eventually make up P`.

Finally, we consider the case where we can continue iterating ω but it never intersects ∆.

(P3) If ω is iterated a huge number of times without hitting ∆ then this most likely means that
the sequence tωnu got trapped inside the attracting neighbourhood of some stable periodic orbit
and we are very unlikely to see any escape time in the future. We therefore define the maximum
numberNmax ą 0 of iterations that we allow without ever hitting ∆ and assign an interval toP´
if this number if exceeded (see Algorithm 6.1 for the implementation). The results described in
Section 2 are based on a choice of Nmax “ 200.

We remark that, while it is not our goal in this paper to prove that any particular parameters
belong to Ω´, our rules for placing parameter intervals in P´ suggest a strong probability
that such intervals belong to, or substantially intersect, open sets in Ω´. Since we know these
intervals explicitly, our calculations may provide the foundations for further work, possibly
applying techniques similar to those of [24] or [6], to actually prove that certain parameter
intervals are indeed regular.

4.3 Emptying the queue
By setting up the numbers w and Nmax, we ensure that all the parameters in Ω are eventually
moved into either P` or P´ and that therefore the process eventually terminates. Our choice of
constants used to obtain the results presented in Section 2, lead to a complete construction of
the partition P , made up of more than 3.9 million intervals, in only 35 minutes of computation
time on a laptop computer.
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It is not completely clear, however, how quickly the computation time may increase if
we choose smaller values of the radius δ of the critical neighbourhood, larger values of N0,
smaller values of the minimum size w of intervals we consider, or larger values for the number
Nmax of iterates before giving up on an interval. It is worth therefore putting in place some
“safeguards” against the possibility of an essentially never ending computation. We can easily
do this by specifying some criteria which limit the amount of computations which we carry out.
If any of these criteria are met, we simply stop the computations and transfer all intervals still
in the queue to P´. This is still completely consistent with the spirit of the construction since
the family P´ is just the collection of intervals for which we could not verify the escape time
condition. The three constraints we can impose are fairly obvious.

1) We can fix the maximal number imax ą 0 of intervals to be processed: we keep track of
each time an interval is picked form the queue for iteration, until one of the situations described
above occurs. After processing this number of intervals, we interrupt the computations.

2) We can fix the maximal allowed queue size q ą 0; for every interval ω that is processed,
up to two new intervals are added to the queue when ωn hits ∆ for some n or when a problem
occurs and the interval ω is halved; thus the size of the queue grows linearly during the progress
of the computation. If the number of intervals stored in the queue reaches or exceeds q then
we interrupt the computations. Setting the limit on the queue size protects against memory
overflow that might be caused by storing too many intervals in the queue, especially if high
precision numbers are used that might occupy considerable amount of memory.

3) We can fix the maximal time t ą 0 (in seconds) that can be used by the program. This
constraint is especially useful in order to bound the amount of time that one is willing to wait
for the final result, and also to protect the web server’s resources when providing access to the
program through the web interface.

We conclude this section with a discussion of the non-trivial problem of deciding how to
prioritize the intervals in the queue, i.e., how to decide which interval to iterate at any given
moment. This is especially important if the computation is stopped before the queue is empty,
for example, if the program is allowed to run for a limited amount of time only.

From a computational point of view, a queue is a data structure that is capable of storing
objects of certain type, and provides means for extracting them. There are different types of
queues in terms of the order in which the objects are extracted. For example, the fifo queue
(“first in – first out”) provides the objects in the order in which they were put in the queue (like
a typical queue in a supermarket), and the lifo queue (“last in – first out”) provides the most
recently stored object first (like a stack of plates).

It seems that a good approach is to use a priority queue, in which objects are sorted based
on some priority, and the ones with the highest priority are extracted first. More specifically,
the queue stores parameter intervals together with the number of times they were successfully
iterated, and this number serves as the priority in our queue; we first extract intervals that were
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iterated the least number of times. In this way, we prioritise those intervals that are lagging
behind the others in iterations, so that we could achieve a state in which all the intervals that
are left in the queue have been iterated at least a certain number of times. if several intervals in
the queue have been iterated the same number of times (as is of course often the case) we take
the biggest first. In the quite unlikely event that two such intervals are exactly the same size, we
introduce other criteria such as priorities depending on the reasons an interval was added to the
queue.

4.4 Case study
We conclude this section with a case study of the “history” of a specific stochastic interval
ω P P` that actually appeared in the computations described in Section 2, in order to illustrate
some of the processes described above in a concrete case. We consider the interval ωp1q for
which we have the following outer enclosure when rounding the endpoints to 12 significant
digits:

ωp1q Ă r1.96076793815, 1.96077475689s.

Its iterates are shown in Table 1. This is the 1953rd interval taken for iterations from the queue
(recall Section 4.2 for details on how the “queue” works). The numbers in Table 1 show that the
interval got close to ∆ at the 7th and 15th iterates. Its width was steadily growing with sudden
drops after those two events; eventually the interval “exploded” to take up almost the entire
phase space at the 26th iterate, thus satisfying the escape time condition with |ωN | ě 3.5.

Let us check the circumstances under which this interval entered the queue. Each interval
that is put in the queue is assigned a consecutive number, starting from 1 that was assigned
to the original interval Ω “ r1.4, 2s. The computation log shows that ωp1q was assigned the
number 2565, and it was put in the queue as a result of halving another interval, let us call it
its parent and denote by ωp0q. This was the 1914th processed interval, and it was halved due
to a problem with determining the sign of c1npωq, discussed in Section 4.2 as subcase (P2a),
after having computed its 7th iterate. Recall that ωp1q7 was indeed close to ∆; which means that
halving the interval ωp0q instead of throwing it into P´ was a good decision, because it allowed
saving at least a half of it for P`.

Let us have a look at the “twin brother” ωp2q of the successful interval ωp1q. Its 12-digit
outer enclosure is r1.96076111942, 1.96076793816s; it was assigned the number 2564 when it
was put in the queue. It was iterated just before ωp1q, that is, it was the 1952nd iterated interval.
It was subject to the same problem as ωp0q and was halved after 7 iterates. Its two halves ωp3q and
ωp4q were put back in the queue, got consecutive numbers 2619 and 2620, and were iterated as
the 1992nd and 1993rd intervals, respectively. The interval ωp4q hit ∆ after a remarkable number
of 31 iterates, and the width of its 31st iterate slightly exceeded 1.5, so it was added to P`. This
means that we already qualified 3{4 of ωp0q as stochastic! However, the problem persisted for
ωp3q, which was then halved again. Its children ωp5q and ωp6q got consecutive numbers 2678
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n ω
p1q
n |ω

p1q
n |

0 r1.9607, 1.9608s 0.0000068187
1 r´1.8839,´1.8838s 0.000019921
2 r´1.5882,´1.5880s 0.000068238
3 r´0.56150,´0.56128s 0.00020992
4 r1.6455, 1.6458s 0.00022887
5 r´0.74766,´0.74689s 0.00076011
6 r1.4017, 1.4030s 0.0011428
7 r´0.0073968,´0.0041981s 0.0031985
8 r1.9607, 1.9608s 0.000030267
9 r´1.8838,´1.8836s 0.00012551

10 r´1.5879,´1.5873s 0.00047967
11 r´0.56046,´0.55892s 0.0015298
12 r1.6466, 1.6484s 0.0017193
13 r´0.75638,´0.75071s 0.0056585
14 r1.3886, 1.3972s 0.0085210
15 r0.0086113, 0.032357s 0.023745
16 r1.9597, 1.9607s 0.00096598
17 r´1.8836,´1.8797s 0.0037938
18 r´1.5871,´1.5727s 0.014284
19 r´0.55781,´0.51266s 0.045141
20 r1.6496, 1.6980s 0.048329
21 r´0.92227,´0.76048s 0.16177
22 r1.1101, 1.3825s 0.27222
23 r0.049666, 0.72824s 0.67856
24 r1.4304, 1.9584s 0.52784
25 r´1.8742,´0.085416s 1.7887
26 r´1.5518, 1.9535s 3.5052

Table 1: Iterates of one specific interval ω P P` with large |ωn| at escape time. All the numbers
rounded to 5 significant digits. An outer bound on each ωn is shown, as well as a lower bound
on its width, as calculated in the high-precision arithmetic. Close encounters with ∆ are shown
in red. Full discussion in Section 4.4.
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and 2679 in the queue. They were pulled out from the queue and processed as the 2032nd and
2033rd intervals, respectively. The problem persisted for ωp5q, while ωp6q was iterated 15 times
until it hit ∆; its 15th iterate was contained in r0.000554, 0.002311s and was not large enough
to put the interval in P`, so it was chopped; note that the left endpoint of ωp6q15 was actually in
∆, so the chopping resulted in only one part put back in the queue. The loss was considerable,
only 70% of ωp6q survived the chopping. We stop our investigation here. Although the fraction
of ωp0q qualified as stochastic did not increase to 7{8, there is hope that some of the descendants
of ωp6q eventually contributed to P` in further iterations.

This short excerpt of the family saga of the interval ωp1q illustrates the main ideas of our
approach in constructing the sets P` and P´, and shows a variety of dynamical situations
encountered.

5 The Numerics
The strategies introduced in Section 3 are intertwined into a single computational procedure for
computing inner and outer bounds for ωn together with rigorous estimates for the derivatives
(11) and (12), and splitting the interval ω into smaller parts whenever condition (9) is not sat-
isfied or ωn hits ∆. In this section, we explain the issues involved in making sure we obtain
rigorous bounds for all these calculations. In Section 6 we then describe the structure of the
algorithms used to implement the calculations.

5.1 Precision
The very first step in the construction is the choice of the set of representable real numbers
R Ă R. In practice, the choice of this set depends on the representation of numbers used in the
software, and is different for double-precision floating point numbers following the IEEE 754
standard [10] than for floating-point numbers of fixed size implemented by the GNU MPFR
software library [9]. For clarity of presentation, within Section 6 we are going to use bold
typeface to denote elements of R; for example, a P R, as opposed to the general a P R.

It is important to be aware of the fact that the actual result of an arithmetic operation or
the result of the computation of the value of a function on representable numbers need not be a
representable number in general. However, in a proper setting, it is possible to request that such
results are rounded downwards or upwards to representable numbers in the actual machine com-
putations. Therefore, even if it is not possible in general to compute the exact value of many
expressions, it is always possible to compute a lower and an upper bound for each of them.
In the case of elementary operations, such as addition or multiplication, the standards such as
IEEE 754 typically require that the result is rounded downwards or upwards to the closest rep-
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resentable number in the corresponding direction; thanks to this feature, the inaccuracy caused
by rounding is minimised.

The most important quantity of interest regarding the precision of our calculations is the
binary precision p to be used for representable numbers implemented by the MPFR library;
for example, if p “ 250 then the relative accuracy of numbers used in the computations is
roughly 2´250 « 10´80, that is, all the numbers are rounded at the 80th decimal digit, which we
consider quite high precision for the results, yet computationally feasible in terms of the speed
and memory usage. The choice of binary precision is closely related to the number of iterations
which we want to compute, and p “ 250 is quite sufficient for the number of iterations we
consider for the results we describe in Section 2. Higher precision would be desirable and could
easily be implemented if we carried out the calculations for higher values of N0.

A second quantity which affects to some extent the precision of our calculations is the
number s of bisection steps used in the chopping procedure described in Section 3.3 (and more
formally in Algorithm 6.5 below); the higher the value, the more expensive the computations;
the lower the value, the less accurate the chopping procedure. In order to determine reasonable
balance between these two, we made some experiments to check the improvement in the results
and the increase of computation time with the increase in s, and we decided to use s “ 40.

5.2 Rounding
Instead of introducing separate notation for representable versions of all the operations and
functions with rounding downwards or upwards, we use the two special assignment symbols
“:ď” and “:ě” instead of “:“” in order to indicate the rounding direction. Specifically, if
ϕ : Rk Ñ R for some k P N then

u :ď ϕpx1, . . . ,xkq

means that u P R is the result of machine computation of a representable number that is a lower
bound for the actual value of ϕpx1, . . . ,xkq. We define the upwards-rounded counterpart

v :ě ϕpx1, . . . ,xkq

in an analogous way. If the direction of rounding is not important, we use the “rounding to
the nearest” mode, and we use the symbol :« to explicitly indicate the fact that rounding to a
representable number takes place when computing the expression on the right hand side of :«.
This happens, for example, when we compute an approximation of the middle of an interval:
“c :« pa ` bq{2.” We remark that even if one computes a lower bound, the rounding direction
does not have to be “downwards” in all the operations. Consider, for example, the computation
of 1{px ` yq for x, y ą 0. One would first compute z :ě x ` y and then s :ď 1{z so that the
number s is a lower bound on 1{px` yq.

29

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
12

82
2



All the numbers that appear in the algorithms and in the computations must be repre-
sentable. In case any number appears in the description that is not exactly reprsentable in the
binary floating-point arithmetic that we use, such as 1.4 for example, it is implicitly rounded to
the nearest representable number when passed to the algorithm.

Before moving on to describe our main procedure, we introduce some notation.

Definition 5.1. An interval rx´, x`s is said to be of definite sign if 0 R rx´, x`s.

Note that an interval is of definite sign if its both endpoints are not zero and have the same
sign. Given two intervals x “ rx´, x`s and y “ ry´, y`s, let

g´px, yq :“ mint´2uv : u P x, v P yu and g`px, yq :“ maxt´2uv : u P x, v P yu

These functions provide the tightest outer enclosure for the arithmetic operation ´2xy on inter-
vals. Notice that the intervals x and y are not necessarily representable and even if they were,
the output of the functions g´, g` are not necessarily representable. However, if they are of
definite sign, they are given by a simple formula

g´px, yq “

$

’

’

’

&

’

’

’

%

´2x`y` if x ą 0, y ą 0,

´2x´y´ if x ă 0, y ă 0,

´2x´y` if x ą 0, y ă 0,

´2x`y´ if x ă 0, y ą 0;

g`px, yq “

$

’

’

’

&

’

’

’

%

´2x´y´ if x ą 0, y ą 0,

´2x`y` if x ă 0, y ă 0,

´2x`y´ if x ą 0, y ă 0,

´2x´y` if x ă 0, y ą 0.

and can be rounded up and down to get inner and outer enclosures of the set t´2uv : u P x, v P
yu by representable numbers.

5.3 Inductive assumptions
In this subsection, we introduce an inductive procedure for iterating ω and computing a se-
quence of numbers that, as we shall prove, provide lower and upper bounds for the quantities
discussed in Section 3. Let a ă b be representable numbers, and consider the parameter interval

ω :“ ra,bs.

We are going to construct bounds on the quantities discussed in Sections 3.1 and 3.2. To formu-
late these bounds we will define inductively representable intervals

an :“ ra´n , a
`
n s, bn :“ rb´n ,b

`
n s, cn :“ rc´n , c

`
n s, dn :“ rd´n ,d

`
n s, fn :“ rf´n , f

`
n s (15)

and (when possible) two additional intervals

ωn Ď ωn, (16)
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defined in terms of those above, where ωn is the convex hull of an and bn, i.e., the smallest
closed interval containing both an and bn, and ωn is the closure of the unique bounded compo-
nent of RztanYbnu if anXbn “ H (and undefined otherwise). Clearly ωn, ωn, when defined,
are also representable intervals, and if anXbn “ H, are given by the following simple formulas:

ωn :“

#

ra`n ,b
´
n s if a`n ă b´n ,

rb`n , a
´
n s otherwise.

and ωn :“

#

ra´n ,b
`
n s if a´n ă b`n ,

rb´n , a
`
n s otherwise.

(17)

The definition of the intervals (15) is inductive and for the initialisation of the induction, n “ 0,
we define the following representable numbers:

a´0 :“ a`0 :“ a, b´0 :“ b`0 :“ b, c´0 “ c`0 :“ 1, f´0 “ f`0 :“ 1, d´0 “ d`0 :“ 1, (18)

and define the corresponding intervals a0,b0, c0,d0, f0, ω0, ω0 as in (15)-(16). Note that we
admit degenerate intervals as singletons if both endpoints are equal, and we distinguish such
intervals (sets) from the individual numbers such as a and b. We also consider our intervals
“ordered” in the sense that the left endpoint as written is always assumed to be ď the right
endpoint. Let us now assume inductively that intervals ak,bk, ck,dk, fk, and therefore also ωk
(but not necessarily ωk), have been defined for some k ě 0, and that ωk has definite sign:

0 R ωk. p‹qk

With these assumptions, we define the intervals ak`1,bk`1, ck`1,dk`1, fk`1 in the next section.

5.4 Inductive step
Recall that a and b (without subscripts) are the endpoints of the interval ω and for every a P ω,
fa is the quadratic map defined in (1). Recall from Section 5.2 that we use the notation “u :ď
ϕpyq” to indicate that u is computed to be a lower bound on the expression ϕpyq; similarly with
“:ě”. If a`k ă 0, we set

a´k`1 :ď fapa
´
k q, a`k`1 :ě fapa

`
k q, b´k`1 :ď fbpb

´
k q, b`k`1 :ě fbpb

`
k q; (19)

otherwise, we set

a´k`1 :ď fapa
`
k q, a`k`1 :ě fapa

´
k q, b´k`1 :ď fbpb

`
k q, b`k`1 :ě fbpb

´
k q. (20)

Then we let

c´k`1 :ď 1` g´pck, ωkq, c`k`1 :ě 1` g`pck, ωkq, (21)
f´k`1 :ď g´pfk, ωkq, f`k`1 :ě g`pfk, ωkq, (22)
d´k`1 :ď d´k ` 1{f`k`1, d`k`1 :ě d`k ` 1{f´k`1. (23)
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It is easy to see that this gives well defined intervals ak`1,bk`1, ck`1,dk`1, fk`1 and that these
are explicitly and rigorously computable given the representable intervals ak,bk, ck,dk, fk and
under assumption p‹qk. In fact, p‹qk is only required to ensure that the intervals ak`1,bk`1

defined in (19)-(20) are well-defined, the other intervals are well-defined with no assumptions.
However, it is not immediate, nor in fact is it always the case, that these intervals give us any
dynamical information. In the next section we prove a non-trivial result which gives conditions
for these intervals to provide the required bounds.

5.5 Rigorous bounds
The main result of this section gives conditions which ensure that the intervals defined above
provide the bounds for the required quantities.

Theorem 5.2. Let ω :“ ra,bs be a parameter interval and let n ě 0. Suppose that for every
0 ď k ď n the intervals ak,bk, ck,dk, fk have been defined as above and satisfy condition p‹qk.
Then an`1,bn`1, cn`1,dn`1, fn`1 are defined and

cn`1paq P an`1 and cn`1pbq P bn`1. (24)

If cn and fn have definite sign, then also

c1n`1pωq Ď cn`1, pfn`1
q
1
pωq Ď fn`1, c1n`1{pf

n`1
q
1
Ď dn`1. (25)

If, moreover, an`1 X bn`1 “ H and cn`1 has definite sign, then

ωn`1 Ď ωn`1 Ď ωn`1. (26)

We emphasise the fact that the assumptions of the theorem for a fixed n ě 0 can be
verified by means of finite machine computation, which includes the computation of the various
numbers and intervals. In the next section, we introduce Algorithm 6.1 that does precisely this.
The conclusion of the theorem, however, provides nontrivial mathematical properties whose
verification may not be obvious at all. In particular, the inner and outer bounds on ωn, and
the outer bounds on the various derivatives, computed in the inductive way using the formulas
provided in this subsection, are nontrivial ingredients of the computations needed in the bigger
project outlined in Section 1.2.

Proof. We prove Theorem 5.2 by induction on n. For n “ 0, (24) and (25) follow directly from
(18) and the fact that for every a P ω, we have c0paq “ a, and thus c10paq “ 1, and moreover,
f 0 is the identity map, so pf 0q1paq “ 1. Condition (26) follows immediately from (18) and (17),
and from the fact that a ă b. We therefore assume inductively the conclusions of the theorem
for all 0 ď k ď n under the corresponding assumptions.
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To prove (24), since ωn is of definite sign, fa is monotone on ωk for every a, in particular
for a “ a and for a “ b. Since an Ă ωn, the direction of this monotonicity can be determined
by the single number a`n . If this number is negative then both fa and fb are increasing on ωn,
and the numbers computed using (19) satisfy a´n`1 ď a`n`1 and b´n`1 ď b`n`1; the reasoning
is analogous if (20) has to be used. This argument, combined with the formula cn`1paq “
fapcnpaqq that defines the critical orbit for a (and similarly for b), proves cn`1paq P an`1 and
cn`1pbq P bn`1.

The three terms in (25) are all proved by almost the same argument. For the first one, notice
that the formula (21) can be seen as a numerical version of (10); specifically, if cn is an interval
containing c1npaq, as per our inductive assumptions, and if cn and ωn are of definite sign, as
per the assumptions in the theorem, then (21) provides an interval that contains c1n`1paq, i.e.
c1n`1pωq Ď cn`1. A very similar argument applies to the last two terms of (25) except we look
at (22) as a numerical version of (11), and (23) as a numerical version of (12).

Finally, to prove (26), first notice that cn`1 is monotone on ω: this follows from the fact that
cn`1 is of definite sign, as per the assumptions of the theorem, combined with the just proved
property (25) stating that c1n`1pωq Ď cn`1. Thanks to this monotonicity, the image of the interval
ω by cn`1 lies entirely between the images of its endpoints, a and b. The images of these points
are contained in the corresponding intervals an`1 and bn`1, respectively; the latter fact was just
proved as (24). Under the assumption that an`1 and bn`1 are disjoint the formula (17) clearly
defines ωn as the smallest interval containing both intervals a and b, and therefore containing
both endpoints of cn`1pωq, and thus the entire interval cn`1pωq. Moreover, (17) defines ωn`1 as
the closure of ωn`1zpaYbq, which is an interval contained between the images of the endpoints
of ω, and therefore contained in cn`1pωq.

6 The Algorithms
In this section, we introduce algorithms that serve the purpose of conducting the computations
described in Section 5. While introducing the algorithms, we are going to use the concept of
a controller. It is an object to which the progress of computations is reported, which submits
obtained results for further processing if desired, and which is responsible for making decisions
on how to proceed whenever problems are encountered.

6.1 Algorithm for iterating a parameter interval
Algorithm 6.1 below conducts inductive computations described in Sections 5.3–5.4 for a single
interval ω of paramters, and verifies the assumptions of Theorem 5.2 at each iteration. The al-
gorithm is defined in the form of an iterative procedure that is in principle indefinite; therefore,
in the actual computations described in Section 2, we impose some specific stopping criteria
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that are enforced by the controller. Note that there is no single object returned by the algorithm
as its output; instead, the algorithm produces a multitude of data, and supplies this data to the
controller that might, for example, store it in a file or send to another procedure for further
processing. The details on how the controller reacts to the different events indicated by calling
its various functions in Algorithm 6.1 are discussed and explained in Section 6.3, and the pro-
cedure for splitting the interval ω if its iteration hits the critical neighbourhood ∆ “ p´δ, δq is
provided in Section 6.4. The instruction “break” makes the algorithm exit the loop.

Algorithm 6.1.

function process an interval
input:
ω “ ra,bs: an interval;

begin
initialize the induction as defined by (18);
define ω0 and ω0 following (17);
for n :“ 0, 1, 2, 3, . . . do:

compute cn`1 following (21);
if 0 P cn`1 then

controller.problemC (ω, n); break;
compute an`1 and bn`1 following (19) or (20), as appropriate;
if an`1 X bn`1 ‰ H then

controller.innerEmpty (ω, n); break;
define ωn`1 and ωn`1 following (17);
compute fn`1 following (22);
if 0 P fn`1 then

controller.problemF (ω, n); break;
compute dn`1 following (23);
controller.notify (ω, n` 1);
if intωn`1 X∆ ‰ H then

omegaHitDelta (ω, n` 1); break;
end.

The next result is an immediate consequence of the fact that Algorithm 6.1 follows the
construction introduced in Sections 5.3–5.4 and verifies the assumptions of Theorem 5.2, except
instead of checking that the interval ωn`1 is of definite sign, it checks a stronger condition;
namely, given some δ ą 0, the algorithm verifies whether the distance of ωn`1 from the critical
point c “ 0 is at least δ.

Corollary 6.2. Let Algorithm 6.1 be called with a compact interval ω “ ra,bs Ď r1,8q with
a ă b. Assume that the radius δ ą 0 of the critical neighbourhood satisfies δ ă 1. Then,
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every time the algorithm makes a call to the procedure controller.notify with ω and n ` 1, the
quantities computed by this algorithm satisfy the properties (24)–(26).

6.2 A queue of parameter intervals
In this section we introduce an algorithm for managing a collection of intervals that are waiting
to be processed using Algorithm 6.1. The intervals in some input collection are first added to the
queue, obviously together with the number of times they were previously iterated defined as 0.
We assume that the controller introduced in Algorithm 6.1 has unlimited access to this queue.
In the framework of the computations, intervals are extracted from the queue one by one and
processed individually by Algorithm 6.1. This procedure is introduced in Algorithm 6.3 below.

It is important to mention here that some intervals with certain priorities might be added
to the queue by the controller, in response to the different situations that may be encountered in
Algorithm 6.1. This feature makes the problem of determining which interval to process more
sophisticated than just sorting the list of initial intervals at the beginning and processing them
in this order. This observation justifies using the structure of a queue for that purpose.

Algorithm 6.3.

function process all intervals
input:
tωi “ rai,bisuMi“1 for some natural M ě 0

begin
Q := a queue of pairs (interval, integer);
for i :“ 1 to M :
Q.enqueue pωi, 0);

while Q is not empty:
ω := Q.dequeue();
process an interval (ω); // Algorithm 6.1

end.

6.3 Overestimate problems
Whenever assumptions of Theorem 5.2 cannot be successfully verified in Algorithm 6.1, the
controller is notified and must take some action. The two obvious choices are either to abandon
the problematic interval and not to consider it for further processing, or subdivide it into smaller
parts and put some or all of them in the queue Q that is defined in Algorithm 6.3 above. In this
section we describe the actions that we chose to undertake in the cases shown in Algorithm 6.1.

The two problems with verifying the various technical assumptions in Algorithm 6.1, re-
ported to the controller using the functions controller.problemC and controller.problemF, are
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of similar nature. The first problem is reported when we fail to verify (9) that would imply the
monotonicity of cn, and thus we cannot use our method for computing a rigorous bound on ωn
introduced in Section 3.1. It is likely that the problem with verifying the monotonicity of cn is
caused in many cases by considerable overestimates in computing the rigorous bound cn for
c1npωq. The second problem appears if the overestimates in computing an outer bound fn for
pfnq1pωq become so bad that the bound includes 0, which is obviously wrong. Algorithm 6.4
shows a suggestion of what one can do in these two situations. Our strategy is to halve the in-
terval ω in hope that the problem will disappear (which indeed often happens, as illustrated in
the case study described in Section 4.4). The controller puts both halves of ω to the queue Q so
that these smaller intervals can be processed later.

Algorithm 6.4.

function controller.problemC, function controller.problemF
input:
ω “ ra,bs: an interval;
n: an integer;

begin
c :« pa` bq{2;
Q.enqueue (ra, cs, n);
Q.enqueue (rc,bs, n);

end.

The problem reported in Algorithm 6.1 by a call to the function controller.innerEmpty,
however, is of different nature, and directly related to the situation described in (P2b) in Section
4.2. The interval must be then abandoned (moved to P´). We do not provide pseudocode for
this algorithm, because it is trivial.

6.4 Subdivisions of parameter intervals
In this subsection we introduce an algorithm for subdividing a parameter interval ω when the
numerical computations indicate that ωn might intersect the critical neighbourhood ∆. The
purpose of this subdivision is to cut out the part of ω that falls onto ∆, and to leave as much
as possible from the interval ω in the form of one or two subintervals of ω that can be iterated
further.

We begin by introducing Algorithm 6.5 that uses the idea of the bisection method ex-
plained in Section 3.3 to find a possibly small (or large) value of the parameter a such that
cnpaq is proved numerically to be below (or above, depending on which one is requested, the
parameter called below is used to make the choice) a certain “border” value v. The course of
action of the algorithm depends on whether cn is increasing or decreasing, and this information
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is passed to the algorithm in the parameter called increasing. The number of bisection steps to
conduct is given by the parameter s ą 0. The features of the algorithm are precisely stated in
Proposition 6.6 below.

Algorithm 6.5.

function bisection
input:
ω “ ra,bs: an interval;
v: real number;
n, s: positive integers;
increasing, below: boolean values (true or false);

begin
repeat s times:

m :« pa` bq{2;
c´ :ď cnpmq;
c` :ě cnpmq;
if increasing and below then

if c` ď v then a :“m; else b :“m;
p :“ a;

if increasing and not below then
if c´ ě v then b :“m; else a :“m;
p :“ b;

if not increasing and below then
if c` ď v then b :“m; else a :“m;
p :“ b;

if not increasing and not below then
if c´ ě v then a :“m; else b :“m;
p :“ a;

return p;
end.

Proposition 6.6. Let ω “ ra,bs Ă r1,8q be a compact interval. Let n ą 0 be an integer such
that cn is monotone on ω. Let the constant called “increasing” have the value “true” if and
only if cn is increasing. Let s ą 0 be an integer. Let v P ωn. Let p´ be the number returned by
Algorithm 6.5 with the parameter “below” set to “true”, and let p` be the number returned by
Algorithm 6.5 with the parameter “below” set to “false”.

Then

cnpp
´
q ď v ď cnpp

`
q, (27)

and the same holds true for the numerically computed bounds for cnpp´q and cnpp`q.
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Proof. Consider the case in which cn is increasing (the case of cn decreasing is analogous),
and thus assume increasing is set to “true.” We shall prove that cnpp´q ď v (the other part is
analogous), and thus assume below is set to “true.” By the assumptions, cnpaq ď v ď cnpbq, so
a is a good initial guess for p´, but we are going to get a tighter bound. In the loop repeated
s times, the approximate midpoint m of the interval ra,bs is computed. Then a lower bound
c´ and an upper bound c` for the value of cnpmq are computed, and compared with v. If it
was proved numerically that cnpmq ď v then the interval ra,bs is replaced with rm,bs, and m
becomes a new candidate for p´. Otherwise, a remains a candidate for p´, but we tighten the
interval ra,bs by replacing it with ra,ms. After this step, cnpp´q ď v, and the same holds true
after the number of s steps.

The fact that the same inequalities hold true for the numerically computed bounds follows
immediately from the fact that precisely these bounds are computed in Algorithm 6.5 and the
corresponding inequalities verified to obtain (27). We note, however, that the numerical method
for computing these bounds must be identical each time, or otherwise this final conclusion may
not hold true, due to rounding.

Remark 6.7. Since the interval ra,bs is halved s times in Algorithm 6.5, the precision with
which p´ and p` are estimated corresponds to 2´s of the initial size of the interval ω.

Next, we are going to introduce Algorithm 6.8 that uses Algorithm 6.5 to chop the interval
ω into three pieces: ω1, ω2, and ω3, with mutually disjoint interiors, such that cnpωiq X∆ “ H

for i “ 1, 2 unless ωi is degenerate (a singleton). Conceptually, if cnpωq intersects ∆ then we cut
out the part ω3 that hits ∆ from the middle of ω, so that we can continue iterating the remaining
two subintervals of ω. The two computed subintervals ω1 and ω2 are added to the queue, unless
they are too small, which is defined in terms of a certain fraction of the length of the interval ω,
and the controller is notified about the interval ω3 excluded from further computations.

Algorithm 6.8.

function omega hit Delta
input:
ω “ ra,bs: an interval;
n: an integer;
ωn “ ru

´,u`s: an interval;
increasing: a boolean value (true or false);

begin
ra1,b1s :“ ra,bs;
let s ą 0 be the number of bisection steps recommended by the controller;
if u´ ă ´δ then

if increasing then
a1 := bisection ( ω, v “ ´δ, n, s, increasing = true, below = true);
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else
b1 := bisection ( ω, v “ ´δ, n, s, increasing = false, below = true);

if u` ą δ then
if increasing then

b1 := bisection ( ω, v “ δ, n, s, increasing = true, below = false);
else

a1 := bisection ( ω, v “ δ, n, s, increasing = false, below = false);
if a ‰ a1 then Q.enqueue (ra, a1s, n);
if b ‰ b1 then Q.enqueue (rb1,bs, n);
controller.notify excluded interval (ra1,b1s);

end.

Proposition 6.9. Let ω “ ra,bs Ă r1,8q be a compact interval of parameters. Let n ą 0 be
an integer. Assume that ωn Ď ωn Ď ωn, and that ωn X ∆ ‰ H. Assume cn is monotone on ω
and the value of the parameter “increasing” is true if and only if cn is increasing.

Then all the intervals ωi added to the queue Q by Algorithm 6.8 applied to these objects
satisfy the following:

ωi Ă ω. (28)

ωin X∆ “ H, (29)

where ωin is the interval computed in Algorithm 6.1 for ωi.

Proof. By construction, it is obvious that ωi Ă ω. We are going to prove that the outer bound
ω1
n for cnpra, a1sq does not intersect ∆ if a ‰ a1 (the argument about rb1,bs is analogous). By

Proposition 6.6, if cn is increasing on ω and u´ ă ´δ then the bisection method provides a1 for
which the numerically computed upper bound w for cnpa1q satisfies w ď ´δ, and then indeed
cnpra, a

1sq X∆ “ H, also as computed in the numerical version (with rounding).

6.5 Software
A software implementation of the algorithms introduced above is publicly available at [22].
The program is a command-line utility (to be launched in a text terminal, or at the command
prompt), written in C++. It complies with the GNU C++ compiler (version 8.3.0, as of writ-
ing the paper). The GNU MPFR software library [9] is used for arithmetic operations on real
numbers whenever high precision of the results and conrolled rounding are necessary. In par-
ticular, all real numbers provided in the input in the decimal form are rounded to the nearest
representable numbers at the target precision by an MPFR function.

We additionally provide a web interface at [22] that makes it possible to run the program
and see the results directly from the web browser. One fills out a table with the arguments to
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be passed to the program, hits the button to submit the form, and obtains the output produced
by the program directly in the web page. The web interface allows the user to specify the
parameter interval of interest and set several of the parameters involved in the computations,
such as δ,N0 and other parameters discussed in Section 4.2, and possibly some other parameters
not documented here (related, for example to the form in which the output is presented). For
further details, we refer the reader to [22].
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10 3 < | |
(5.2% measure)
17 intervals

10 4 < | | 10 3

(20.0% measure)
458 intervals

10 5 < | | 10 4

(30.7% measure)
6565 intervals

10 6 < | | 10 5

(22.7% measure)
44606 intervals

10 7 < | | 10 6

(15.6% measure)
281833 intervals

| | 10 7

(5.7% measure)
1102584 intervals
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N = 25 (50.7%) 1287940 intervals

N = 26 (19.3%)
90365 intervals

N = 27 (12.5%) 34150 intervals
N = 28 (3.4%) 11615 intervals

N = 29 (4.0%) 4594 intervals
N = 30 (0.5%) 2037 intervals

N = 31 (3.0%) 1325 intervals
N = 32 (0.5%) 866 intervals

N 33 (6.0%) 3171 intervals
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| N| < 0.5
3444 intervals
(11.2% measure)

0.5 | N| < 1.0
6937 intervals
(11.9% measure)

1.0 | N| < 1.5
11804 intervals

(11.9% measure)

1.5 | N| < 2.0
24071 intervals

(16.3% measure)

2.0 | N| < 2.5
72022 intervals

(17.8% measure)

2.5 | N| < 3.0
88772 intervals

(10.9% measure)

3.0 | N| < 3.5
130214 intervals
(7.6% measure)

3.5 | N| < 3.9
386938 intervals
(9.7% measure)

3.9 | N|
711861 intervals
(2.7% measure)
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low(fN(a)) < 0.00
2293 intervals
(12.5% measure)

0.00 low(fN(a)) < 0.05
9865 intervals
(8.8% measure)

0.05 low(fN(a)) < 0.10
49080 intervals

(13.8% measure)

0.10 low(fN(a)) < 0.15
137185 intervals
(19.1% measure)

0.15 low(fN(a)) < 0.20
288577 intervals
(20.2% measure) 0.20 low(fN(a)) < 0.25

381275 intervals
(15.0% measure)

0.25 low(fN(a)) < 0.30
290900 intervals
(7.7% measure)

0.30 low(fN(a))
276888 intervals
(2.9% measure)
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upp(c′N( )/(fN)′( )) < 1.50
2734 intervals
(4.3% measure)

1.50 upp(c′N( )/(fN)′( )) < 1.60
36243 intervals
(15.4% measure)

1.60 upp(c′N( )/(fN)′( )) < 1.65
248315 intervals
(19.6% measure)

1.65 upp(c′N( )/(fN)′( )) < 1.75
1134431 intervals
(24.8% measure)

1.75 upp(c′N( )/(fN)′( )) < 2.00
10704 intervals

(12.2% measure)

2.00 upp(c′N( )/(fN)′( )) < 10.00
3473 intervals
(17.0% measure)

10.00 upp(c′N( )/(fN)′( ))
163 intervals
(6.6% measure)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
12

82
2



upp( ) < 1.01
1384525 intervals
(34.7% measure)

1.01 upp( ) < 1.02
20784 intervals
(7.2% measure)

1.02 upp( ) < 1.05
15273 intervals

(10.6% measure)

1.05 upp( ) < 1.10
6580 intervals

(8.0% measure)

1.10 upp( ) < 1.50
6347 intervals

(15.6% measure)

1.50 upp( ) < 3.00
1698 intervals
(12.3% measure)

3.00 upp( ) < 10.00
698 intervals
(8.0% measure)

10.00 upp( )
158 intervals
(3.6% measure)
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