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on a cubical approximation of the map and the theory of multivalued
maps. A software implementation of the algorithms introduced in the
paper is available at [27].

1 Introduction

This paper provides an e�cient algorithm to be used in the computation of the
map on homology induced by a continuous function f : (X,A) → (Y,B). This
work is motivated by a growing number of applications in which f is not treated
analytically, but rather is obtained via rigorous numerical approximation [4, 5,
6, 15, 16, 19] or experimental observation [18]. As such, before describing the
results presented here there are three essential issues that need to be addressed:
the approximation of f , the representation of the spaces and the function in a
combinatorial form that can be manipulated by a computer, and the requirement
for dimension independent algorithms.

Beginning with the question of approximation, consider the case of a non-
linear function f : Rn → Rm. Due to computational errors the best that one
can expect is that a careful numerical estimation of f results in a di�erent map
fnum with the property that given x ∈ Rn one can construct ε > 0 such that
‖f(x) − fnum(x)‖ < ε, or equivalently f(x) ∈ Bε(fnum(x)); that is the cor-
rect value of f(x) lies in an ε-ball of the numerical approximation of f . It is
this latter formulation that suggests the use of multivalued maps as a means of
representing f .

To be more precise, a multivalued map F :X −→→Y is a function from X to
the power set of Y , i.e. F (x) ⊂ Y for every x ∈ X. We impose the additional
assumption that F (x) 6= ∅. A continuous map f :X → Y is called a selector of
F :X −→→Y if f(x) ∈ F (x) for every x ∈ X.

We will use multivalued maps to approximate continuous functions on the
level of topology. However, as was mentioned earlier, in order to use the computer
we need a combinatorial means of representing these multivalued maps. For this
purpose we make use of the cubical theory developed in [11]. As is made clear
shortly, this is not an idiosyncratic choice�our algorithms strongly exploit the
fact that the product of cubes is a cube and inversely the obvious projections
map cubes to cubes.

Recall that an elementary cube Q in Rn is a d-dimensional face (for any d)
of the usual integer (cubic) lattice cell complex in Rn, which can be formally
de�ned as

Q = I1 × I2 · · · × In ⊂ Rn

where Ii = {li} or Ii = [li, li + 1] and li ∈ Z. The set of elementary cubes in Rn

is denoted by Kn. The dimension of Q is de�ned as

dimQ := card {i | Ii = [li, li + 1]}

and Knd indicates the set of d-dimensional elementary cubes in Rn. Elements of
Knn are called full cubes.

Let X ⊂ Kn, then its geometric realization is

|X | :=
⋃
X ⊂ Rn.
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Consider �nite sets of full cubes X ⊂ Knn and Y ⊂ Kmm. A combinatorial
multivalued map is a multivalued map F :X −→→Y. The upper envelope of F is
the multivalued map dFe: |X |−→→|Y| de�ned by

dFe(x) =
⋃
{|F(Q)| | x ∈ Q ∈ X} ⊂ |Y|.

Observe that this provides us with a well de�ned procedure for passing from
combinatorial data to topological information. To simplify the notation, we will
implicitly de�ne F := dFe.

A set X ⊂ Rn is a cubical set if it is a �nite union of elementary cubes. Note
that a cubical set X is in fact a combinatorial object as it can be represented in
a �nite way by the set X ∈ Kn such that X = |X |. However, the representation
of X is usually non-unique: De�ne Xmax := {Q ∈ Kn | Q ⊂ X} and Xmin :=
{Q ∈ Xmax | for every R ∈ Xmax if Q ⊂ R then Q = R}; thenX = |X | for every
X ⊂ Kn such that Xmin ⊂ X ⊂ Xmax. In the implementation of our algorithms
we try and represent cubical sets as close to Xmin as possible. Since the technical
complications arising from such optimization are inevitable, in the algorithms
described in this paper we operate with cubical sets at the topological level,
but the reader should keep in mind the fact that they are really combinatorial
objects.

Because F is used to represent f , we are particularly interested in full cubical
sets; that is, cubical sets of the form X = |X | where X ⊂ Knn. Observe that if
X is a full cubical set, then there is a unique set of full cubes X ⊂ Knn such that
X = |X |.

To simplify the notation we adopt the following convention. We use calli-
graphic letters to denote combinatorial objects and the corresponding capital
letters to denote the corresponding topological objects. In particular, if a full
cubical set in Rn is written using a capital letter, then the corresponding set of
full cubes is denoted by the corresponding calligraphic letter.

An important notion used in the reduction algorithms is acyclicity. A topo-
logical set is called acyclic if its homology is isomorphic to the homology of a
single-point space. Note that the acyclicity of set may depend on the ring of
coe�cients used to compute homology. A simple example is provided by the
real projective plane.

Because of the intended applications we introduce two more concepts. A
combinatorial multivalued map F :X −→→Y is a combinatorial representation of
a continuous map f :X → Y if f is a selector of F . It is acyclic if F (x) is an
acyclic set for each x ∈ X.

Assume f : (X,A) → (Y,B) is a continuous map of pairs and X,A ⊂ Rn

and Y,B ⊂ Rm are full cubical sets. We are interested in an algorithm com-
puting f∗:H∗(X,A)→ H∗(Y,B). For this end we need to extend the concept of
representation of a single valued map to the maps of pairs. We say that a com-
binatorial multivalued map F :X −→→Y is a representation of f : (X,A) → (Y,B)
if F is a representation of f :X → Y and F(A) ⊂ B. (Note that if F :X −→→Y
is a combinatorial representation of f :X → Y , then the condition F(A) ⊂ B
implies f(A) ⊂ B.) The reader may expect that given a representation F of
f : (X,A)→ (Y,B) we have F (A) ⊂ B, where F = dFe. However, this is not true
in general. In fact, as is indicated in Figure 6, in some cases there exist x ∈ ∂A
such that F (x) 6⊂ B. Therefore, it is convenient to introduce another concept.
A pair (F,G) of multivalued maps is a representation of f : (X,A) → (Y,B) if
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F :X → Y is a representation of f :X → Y and G:A → B is a represenatation
of f |A:A → B, and G ⊂ F . It is straightforward that if F is a combinatorial
representation of f : (X,A)→ (Y,B), then (dFe, dF|Ae) is a representation of f .

Observe that given a continuous map f :X → Y where X and Y are full
cubical sets, �nding a combinatorial representation F :X −→→Y is a question of
approximation. This is a topic in its own right (see [21], Th. 4.2, and the discus-
sion in [23]) and is not the subject of this paper. Thus, we will limit ourselves
to a few comments. The simplest approach to computing a rigorous enclosure
is to use interval arithmetic [20] to evaluate the images of entire intervals or
cubes by the map f . For simple nonlinearities more sophisticated approaches
to obtaining bounds can also be used [5]. A more challenging example arises
when f is the translation map of a continuous dynamical system induced by
an ODE. In this setting one can use the method introduced in [12, 23, 33] (an
implementation is available at [2]), as, for instance, was done in [22, 25, 26].
With this set of examples as justi�cation our approach for the remainder of this
paper is to assume that an appropriate combinatorial representation has been
found.

The use of cubes, as opposed to simplicies, is contrary to the customary
approach and thus deserves comment. At �rst it seems that the standard sim-
plicial theory provides us with a good setting for algorithmic computation of
maps in homology. Given a continuous map f : |K| → |L| of two simplicial com-
plexes K and L, which satis�es the star condition one can construct a simplicial
approximation of the map and from the simplicial approximation one can de-
termine the map in homology. However, there are at least three problems with
this approach.

• To verify the star condition one has to �nd good upper estimates of the
images of the map on simplices. Unfortunately standard numerical algo-
rithms for upper estimates of images are based on interval arithmetic,
which leads to a signi�cant overestimation when applied to simplices.

• In most cases a signi�cant amount of subdivisions of K is needed in order
to guarantee that the star condition is met even for simple maps. The
large subdivision implies heavy numerical computations to verify the star
condition. Additionally, we know of no practical a priori formula for deter-
mining what the optimal subdivision should be, which forces one to loop
in the search of an optimal subdivision.

• Last but not least is the overhead caused by the necessity of matching the
vertices in the star condition needed to de�ne the simplicial approxima-
tion.

A possible alternative is to construct a covering A := {Aw | w ∈ L} of |K|
such that Aw ⊂ f−1(Stw), �nd the Lebesgue number, λ, of A and replace K
with sdN K, where N is chosen so that each simplex in sdN K has diameter
less than λ/2. Unfortunately this approach appears to be even worse, because
�nding Aw requires the construction of approximations of f−1(Stw) from below,
which is hard even for simple sets like balls or rectangles.

Of course these arguments do not imply that an algorithm based on simpli-
cial homology is not possible, merely that we were not able to overcome these
obstacles. However, we do believe that the approach presented in this paper,
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based on cubical homology and graphs of multivalued maps, when applied to
maps available only through numerical computations is more natural and prac-
tical.

The �nal point which needs to be addressed is the justi�cation for the de-
velopment of a dimension independent algorithm. As was mentioned earlier,
the origins of this work lie in the analysis of numerical and experimental data.
In particular, the common strategy for these applications is to use the com-
puter to identify an isolating neighborhood and compute its homology Conley
index which involves computing the relative homology of a map (see [17, 14]
for an introduction to this theory in the context of computations). For the ear-
liest applications [15, 16, 19, 18] the computation of the homology map was
greatly simpli�ed by the fact that the maps of interest were de�ned on subsets
of the plane and only the �rst homology groups were involved. This meant that
the computation could be reduced to a question involving the connectedness
of graphs. However, recent applications to in�nite dimensional problems [4, 5]
require that these computations be performed in higher dimensional spaces (di-
mension 6 for the speci�c example discussed at the end of this introduction).
Furthermore, the higher homology groups come into play. At the moment, it
appears that the techniques described in this paper are essential to these appli-
cations in the sense that they can handle relatively high dimensional data in an
e�cient manner both in time and memory.

Our main result is Algorithm 5.1 (see Section 5) whose validity is justi�ed
by the following theorem.

Theorem 1.1 Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be full cubical sets. Let the
combinatorial multivalued map F :X −→→Y be a representation of

f : (X,A)→ (Y,B).

Assume that F(A) ⊂ B and that both F and F|A are acyclic. Then the ho-
momorphism returned by Algorithm 5.1 invoked with F , A, B and �incl� set to
false coincides with f∗:H∗(X,A)→ H∗(Y,B) in the sense that the domain D of
this homomorphism is isomorphic to H∗(X,A), the codomain C of it is isomor-
phic to H∗(Y,B), and the following diagram, in which ϕ denotes the returned
homomorphism, commutes

D
ϕ−→ Cy' y'

H∗(X,A)
f∗−→ H∗(Y,B)

Moreover, if X ⊂ Y, A ⊂ B and the inclusion i: (X,A) ↪→ (Y,B) induces an
isomorphism in homology, then the homomorphism returned by Algorithm 5.1
invoked with F , A, B and �incl� set to true coincides with the endomorphism
(i∗)−1 ◦ f∗:H∗(X,A)→ H∗(X,A).

While necessary, the validity of an algorithm is not su�cient. To be of practi-
cal value it must also be e�cient. Though we will not present a formal analysis
of the complexity, our experience suggests that the two predominant factors
in the cost of computing homology are the number and dimensions of the ele-
ments of X and Y. For this reason much of the algorithm focuses on reducing
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theses quantities before computing homology. Since F :X −→→Y, we cannot ma-
nipulate elements of X and Y in a completely independent manner. Thus, we
have adopted the following strategy modelled on [9, 7, 8] which allows us to
simultaneously keep track of the modi�cations to X , Y and F .

Given a continuous map f :X → Y one always has the commutative diagram

Γf
↗ ι

yq
X

f−→ Y

(1)

where Γf := {(x, f(x)) | x ∈ X} ⊂ X × Y is the graph of f , ι is the embedding
map ι(x) = (x, f(x)), and q is the projection onto Y . Observe that ι is a home-
omorphism whose inverse is the projection p: Γf → X. Thus, f = q ◦ p−1 and in
particular f∗ = q∗ ◦ (p∗)−1; that is the homology map of f can be computed in
terms of the homology maps of two projections.

This same idea carries over to the multivalued setting. More precisely, let
F :X −→→Y be an acyclic combinatorial multivalued represtentation of f :X → Y .
Then we can construct a corresponding diagram

ΓF
↙ p

yq
X

F−→→ Y

(2)

where ΓF := {(x, y) | x ∈ X, y ∈ F (x)} ⊂ X×Y is the graph of F . Of course, in
this case the projection p may not be invertible. However, because F is acyclic
valued, p∗ is an isomorphism (see Proposition 2.4) and hence (p∗)−1 is well
de�ned. In particular, as we will show, f∗ = q∗ ◦ (p∗)−1.

Since our goal is to compute f∗:H∗(X,A)→ H∗(Y,B), we have two related
diagrams,

ΓF
↙ pF

yqF

X
F−→→ Y

ΓG
↙ pG

yqG

A
G−→→ B

(3)

that need to be considered, where G = dF|Ae.
Because p and q are simple projection maps, the computational cost of this

approach to computing homology is determined mainly by the number of ele-
mentary cubes in ΓF \ ΓG. This is due to the fact that the elementary cubes
in ΓG do not become part of the relative chain complex of the graph of (F,G)
which is used for the homology computation (consult Proposition 3.2 and the
de�nitions that precede it for details).

As was suggested earlier, the e�ciency of Algorithm 5.1 arises from prepro-
cessing the sets of elementary cubes before proceeding with algebraic computa-
tions. This is done using a variety of other algorithms three of which we brie�y
mention here.

The �rst, reduceF (see Algorithm 4.3), is used to reduce the number of
elements of X that need to be considered. More precisely, reduceF takes as
input the sets X and A and produces sets X̃ ⊂ X and Ã ⊂ A with the property
that H∗(X̃, Ã) ∼= H∗(X,A) and both F̃ := F|X̃ and F̃ |Ã are acyclic.
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Another way to simplify the computations is to enlarge the set A since its
content is in essence ignored during the homology computation. This is done
using expandF which produces sets Ã and B̃ satisfying A ⊂ Ã ⊂ X and B ⊂
B̃ ⊂ Y such that F|Ã is still acyclic and F(Ã) ⊂ B̃.

The �nal algorithm which we wish to mention here is collapse which when-
ever possible eliminates the highest dimensional cubes. The importance of this
is that in general the cost of homology computations increases rapidly as a func-
tion of the dimension of the cubes and by construction ΓF consists of (n+m)-
dimensional cubes. However, it is intuitively clear that on the level of homology
all the relevant information of the map should be carried by a collection of n-
dimensional cubes in ΓF . collapse is used to perform a reduction to such a set
of elements.

To put the previous discussion into perspective, let us consider an essen-
tial nontrivial application of the techniques introduced in this paper. In [5],
Day, Junge, and one of the authors of this paper, reduce the problem of ob-
taining rigorous results concerning the dynamics of an in�nite dimensional map
to the computation of the homology of continuous maps f : (X,A) → (Y,B).
The justi�cation of this reduction and the details concerning the dynamics can
be found in [5]. For the purpose of this paper it is su�cient to remark that
the homology computations were performed using combinatorial representations
F : (X ,A)−→→ (Y,B), where Y := X ∪ F(X ), B := A ∪ F(A), X = |X |, Y = |Y|,
etc.

Algorithm 5.1 is used to compute the following endomorphism induced in
homology: (i∗)−1 ◦ f∗:H∗(X,A) → H∗(X,A), where i: (X,A) ↪→ (Y,B) is the
inclusion map. Obviously, this result is only valid if i induces an isomorphism in
homology, and this condition is veri�ed during the homology computation. Let
us now explain step by step how the actual program available in [27] proceeds.
Note that some additional actions not listed in Algorithm 5.1 are undertaken
by the program, which is motivated mainly by e�ciency reasons. Moreover,
the map in question has convex values which implies that all its restrictions are
acyclic, and therefore the program skips some time-consuming veri�cations. The
numbers we quote correspond to Example 3 in [5], but in the other two cases
the steps undertaken by the program are essentially the same.

The program �rst reads the sets X and A from the initial data �les (10,330
and 6,683 full cubes in R6) and stores the disjoint sets X \A and A in the mem-
ory. The �rst reduction step applied to the data is the removal of cubes from A
which do not have neighbors in X \A (part of Algorithm 4.1). Then the program
reads Y and B from the disk (25,737 and 22,090 cubes, respectively), stores Y\B
and B in the memory, and veri�es (just in case) that X \ A ⊂ Y and A ⊂ B
to make sure that the inclusion map i: (X,A) ↪→ (Y,B) is well de�ned. Then
the program reduces (X ,A) with the reduce procedure (Algorithm 4.1). This
reduction decreases the data very signi�cantly, with only 699 cubes remaining.
At this point the program considers the map F , but it only reads its restriction
to X \A for the moment. It veri�es that F(X \A) ⊂ Y (just in case) and runs
expandF (Algorithm 4.7) followed by reduce (Algorithm 4.1); this step leaves
332 cubes in X , 197 of which are in A, and adds 2,222 cubes to B. Now the
program considers the map F on the entire set X and reads all the necessary
data from the disk. It veri�es that F(A) ⊂ B to make sure the data is correct.
Then it applies expandA (Algorithm 4.5) to (Y,B), which increases B by 1,091
cubes. This step is followed by applying the reduce procedure (Algorithm 4.1)
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to (Y,B) in such a way that the cubes in F(X ) ∪ X ⊂ Y (7,588 cubes) are left
intact. In our example this decreases the number of cubes in Y to 7,610.

At this point the full cubes are transformed into elementary cubes (called
`cells' for short), because a di�erent data type is used to represent them, and
the procedure collapse (Algorithm 4.9) is applied to (X ,A). It leaves only
9,103 elementary cubes in X \ A. There are still 66,757 elementary cubes left
in A which will be used in the next step, and the dimension of X \A decreases
from 6 to 2. Now reducemap (Algorithm 4.12) is run to determine the images
of the cells in X and in A by |F| and to collapse them to lower-dimensional

cubical sets if possible. This results in the graph of F̃ , a replacement for F |X\A,
consisting of 217,929 cells. The last geometric reduction is eventually applied
to (Y,B). The full cubes that represent them are transformed into elementary

cubes, and collapse is applied in such a way that F̃ (X \A) is preserved. This
reduces the number of elementary cubes in Y\B which are relevant for homology
computation to just 5,945, and the dimension decreases to 3.

To enter the last stage of the computations, the geometric sets are trans-
formed into algebraic data. The elementary cubes in Γ

F̃
and Y \ B are used

as generators of the appropriate chain complexes, and the chain maps corre-
sponding to the projection q: (Γ

F̃
,ΓG) → (Y,B) and to the composition of the

projection p: (Γ
F̃
,ΓG) → (X,A) with the inclusion i: (X,A) ↪→ (Y,B) are cre-

ated, as explained in Section 3. The algebraic homology computation over Z
reveals that H1(Γ

F̃
,ΓG) ' H1(Y,B) ' Z, H2(Γ

F̃
,ΓG) ' H2(Y,B) ' Z18, and

all the remaining homology groups are trivial. Some generators of H2(Γ
F̃
,ΓG)

and H2(Y,B) are �xed, and the matrices M∗ and N∗ of the homomorphisms
induced by q and i ◦ p on the �rst and second homology groups with respect to
these generators are as follows:

M1 =
[

0
]
, N1 =

[
1
]
,

M2 =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0



,
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N2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0



.

Since both N1 and N2 are invertible, it follows that the inclusion i: (X,A) ↪→
(Y,B) induces an isomorphism in homology, and therefore M∗N

−1
∗ is in fact

the matrix of (i∗)−1 ◦ f∗ with respect to some generators of H∗(X,A). All these
computations take about 68 minutes on a PC with a 2.4 GHz processor, and
use almost 100 MB of memory.

The outline of this paper is as follows. In Section 2 we discuss the class of
multivalued maps that are used for the homology computations. Although we
are working in a di�erent context, the reasoning is motivated by Górniewicz [7].
We also present Corollary 2.6 which guarentees that computing the homology
map of an appropriate multivalued function produces the homology map of its
continuous selector.

Section 3 recalls the cubical theory developed in [11]. In particular, it is
indicated how given a combinatorial multivalued map one can construct a chain
map from which the homology map can be computed.

Section 4 describes the reduction algorithms indicated above. As was men-
tioned above the purpose of these algorithms is to preprocess the data so as
to minimize the cost of the homology computations. As such they are essential
elements of Algorithm 5.1. However, for the sake of continuity of presentation
we delay presenting the proofs of their validity to Section 7.

In Section 5 we state Algorithm 5.1 and prove Theorem 1.1. In Section 6 we
present several examples indicating the applicability of this method.

2 Multivalued maps

As was indicated in the introduction, in this section we delve into the class of
multivalued maps used for computing the homology of continuous functions. In
particular, we de�ne homomorphisms induced in homology by such maps. We
begin our discussion on a fairly general level; postponing to the next section the
restriction to the setting of cubical complexes.
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De�nition 2.1 Let X ⊂ Rn and Y ⊂ Rm. A continuous map f :X → Y is a
Vietoris map if the following conditions are satis�ed:

(i) f is proper, that is, f−1(C) is compact for every compact set C ⊂ Y ,

(ii) f−1(y) is acyclic for every y ∈ Y .

Since we are going to restrict our attention to cubical sets, X and Y will be
assumed compact thus making the map f automatically proper. Therefore, in
what follows we often simplify matters by assuming that all the sets we consider
are compact. Moreover, the restriction to cubical sets will guarantee that we can
use the cubical homology theory (as in [11]) without loss of generality.

The following two theorems allow us to use graph projections to compute
the homology of multivalued maps. The �rst is a special case of [30, Theorem
6.9.15] and the second is a straightforward extension.

Theorem 2.2 (Vietoris-Begle Mapping Theorem) Let X and Y be com-
pact. If f :X → Y is a Vietoris map, then the induced map f∗:H∗(X)→ H∗(Y )
is an isomorphism.

Proposition 2.3 Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be compact sets. If
f : (X,A) → (Y,B) is a continuous map such that both f :X → Y and its re-
striction f |A:A → B are Vietoris maps, then f∗:H∗(X,A) → H∗(Y,B) is an
isomorphism.

Proof: Since f is a Vietoris map, the induced homomorphism f∗:H∗(X) →
H∗(Y ) is an isomorphism. For the same reason, (f |A)∗:H∗(A)→ H∗(B) is also
an isomorphism. Applying the �ve lemma to the following commutative diagram
whose rows are the exact sequences for the pairs (X,A) and (Y,B):

· · · → Hk(A) → Hk(X) → Hk(X,A) → Hk−1(A) → Hk−1(X) → · · ·y(f |A)k

yfk

yf y(f |A)k−1

yfk−1

· · · → Hk(B) → Hk(Y ) → Hk(Y,B) → Hk−1(B) → Hk−1(Y ) → · · ·

we conclude that f∗:H∗(X,A)→ H∗(Y,B) is an isomorphism.

Let us now introduce the notion of upper semi-continuity for multivalued
maps which corresponds to the notion of continuity for (ordinary) maps in our
case. Note that there also exists the notion of lower semi-continuity (see [11] for
details), but we will not use it here.

Consider a multivalued map F :X −→→Y . It is upper semi-continuous if for
every x ∈ X the set F (x) is compact and for every open set V ⊂ Y the set
F−1(V ) := {x ∈ X | F (x) ⊂ V } is an open subset of X. By [7, Proposition 1.2]
if F :X −→→Y is upper semi-continuous then the image F (A) of every compact
set A ⊂ X under F is compact.

A multivalued map G:X −→→Y is a submap of a multivalued map F :X −→→Y ,
if G(x) ⊂ F (x) for all x ∈ X. Observe that a selector f of F is a particular
example of a submap.

The following proposition indicates how we will make use of Vietoris maps
in the context of upper semi-continuous multivalued maps. Recall that a multi-
valued map F :X −→→Y is acyclic if F (x) is acyclic for every x ∈ X.
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Proposition 2.4 Consider compact sets A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm. Let
F :X −→→Y and let G:A−→→B be a submap of F |A. If F and G are acyclic upper
semi-continuous maps, then the natural projection p: (ΓF ,ΓG)→ (X,A) induces
an isomorphism in homology.

Proof: Since the image of a compact set under an upper semi-continuous map is
compact, the pre-image of every compact set by each of the projections pF : ΓF →
X and pG: ΓG → A is compact. This property combined with the acyclicity of F
and G implies that pF and pG are Vietoris maps. Moreover, pG is a restriction
of pF . Proposition 2.3 completes the proof.

We de�ne the map induced in homology by a pair of multivalued maps (F,G)
satisfying the assumptions of Proposition 2.4 in the following way:

(F,G)∗ := q∗ ◦ (p∗)−1:H∗(X,A)→ H∗(Y,B),

where q is the natural projection (ΓF ,ΓG)→ (Y,B). Note that by Proposition
2.4, p induces an isomorphism in homology, so this map is well-de�ned. More-
over, it is easy to see that if F = f (that is, F is a single-valued map), then
(F,G)∗ = (f, f |A)∗ = f∗.

Proposition 2.5 Consider compact sets A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm. Let
F :X −→→Y and G be a submap of F |A:A−→→B. Assume that F and G are acyclic

upper semi-continuous maps. If F̃ and G̃ are acylic upper semi-continuous
submaps of F and G, respectively, and G̃ is a submap of F̃ , then (F,G)∗ =
(F̃ , G̃)∗.

Proof: Denote the natural projections for the map F by p, q, and for the map
F̃ by p̃, q̃. Consider the following commutative diagram:

(ΓF ,ΓG)
↙ p ↘ q

(X,A)
xι (Y,B)

↖ p̃ ↗ q̃

(Γ
F̃
,Γ

G̃
)

where ι: (Γ
F̃
,Γ

G̃
) ↪→ (ΓF ,ΓG) is the inclusion. Apply the homology functor to

this diagram and notice that

(F,G)∗ = q∗ ◦ (p∗)−1 = q∗ ◦ ι∗ ◦ (p̃∗)−1 = q̃∗ ◦ (p̃∗)−1 = (F̃ , G̃)∗.

Corollary 2.6 Let F and G be as in Proposition 2.4. Let f : (X,A) → (Y,B)
be a continuous map. If f is a selector of F and f |A is a selector of G, then
(F,G)∗ = f∗.

3 Representable sets and maps

In this section we return to the discussion of the combinatorial representation
of sets and maps in terms of elementary cubes. We begin by introducing some
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additional terminology and then turn to the relation between these combinato-
rial objects and the topological constructs of the previous section. We conclude
with a description of the formulas for the chain maps of the graph projections.

If P ⊂ Q ⊂ Rn are two elementary cubes, then P is a face of Q. It is a
proper face of Q if, in addition, P 6= Q. Given an elementary cube Q, de�ne

◦
Q := Q \

⋃
{P | P is a proper face of Q} .

Observe that if P and Q are elementary cubes such that P 6= Q, then
◦
P ∩

◦
Q = ∅.

Since by de�nition every cubical set is the �nite union of elementary cubes, it is

compact and, moreover, is a disjoint union of
◦
Q over all the elementary cubes

Q it contains.
A multivalued map F :X −→→Y , where X ⊂ Rn and Y ⊂ Rm are cubical sets,

is called a cubical multivalued map if ΓF is a cubical set in Rn+m. It follows

that F (x) is a cubical set in Rm for every x ∈ X and F is constant on
◦
Q

for every elementary cube Q ⊂ X. Note that since ΓF is compact, F is upper
semi-continuous.

We would like to stress that a cubical multivalued map is in fact a combi-
natorial object and can be represented in a �nite way by the set of assignments{
◦
Q 7→ F (

◦
Q) |

◦
Q ⊂ X

}
. In particular, in order to de�ne such a map in an al-

gorithm, it is enough to de�ne each F (
◦
Q), and this is done in Algorithm 4.12,

although the assignment �F (
◦
Q) := D� may look strange at �rst glance.

As an immediate consequence of Corollary 2.6 we have the following

Theorem 3.1 Let A ⊂ X ⊂ Knn, B ⊂ Y ⊂ Kmm, and F :X −→→Y. Assume that
F(A) ⊂ B and F is a representation of a continuous map f :X → Y (note
that then f(A) ⊂ B). Let G := F|A. If F and G are acyclic, then (F,G)∗ =
f∗:H∗(X,A)→ H∗(Y,B).

Computing the homology of f with the use of a pair of multivalued maps
(F,G) instead of using F : (X,A)−→→ (Y,B) directly (as is suggested in [7]) may,
at �rst glance, appear somewhat arti�cial. However, it should be kept in mind
that the actual computations are performed using F and by de�nition F = dFe.
Because of this F(A) ⊂ B does not imply that F (A) ⊂ B (see F (x) in Figure
6 for a counterexample). In fact, one can check that F (A) ⊂ B if and only if
F(oX (A)) ⊂ B, where oX (A) is the set A together with all its neighbors in X ,
that is,

oX (A) := {Q ∈ X | Q ∩ P 6= ∅ for some P ∈ A} .

Note that even the identity map I:X −→→X given by I(Q) = {Q} does not in
general satisfy this assumption.

We would also like to explain why we assume that both maps F and F|A
are acyclic in Theorem 3.1. The reason is that a restriction of an acyclic com-
binatorial multivalued map need not be acyclic, as one of the examples in [27]
proves.

In the remainder of this section we introduce explicit formulas for the chain
maps of the projections used to compute the homomorphism induced in homol-
ogy by a pair of multivalued maps.
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Given a pair of cubical sets (K,L) let C(K,L) denote the associated cubical
chain complex. This is a free chain complex whose generators correspond to the
elementary cubes Q ⊂ K such that Q 6⊂ L. The generator corresponding to Q
is denoted by Q̂. See [11] for further details.

Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be cubical sets. Let F :X −→→Y and
G:A−→→B be acyclic cubical multivalued maps such that G is a submap of F |A.
The chain map ϕ:C(ΓF ,ΓG)→ C(X,A) of the projection p: (ΓF ,ΓG)→ (X,A)
is de�ned on generators Q̂ of Ck in the following way. If the corresponding cube
Q is reduced by the projection map (i.e., dim p(Q) < dimQ), then Q̂ is mapped
to zero. Otherwise it is mapped to the generator of Ck(X,A) corresponding to
p(Q) (which still can be zero if p(Q) ⊂ A). Formally, this de�nition can be
written as

ϕk(Q̂) =
{
p̂(Q) if p̂(Q) ∈ Ck(X,A),
0 otherwise.

The chain map ψ:C(ΓF ,ΓG)→ C(Y,B) of the projection q: (ΓF ,ΓG)→ (Y,B)
is de�ned similarly.

Proposition 3.2 (see [11]) The homomorphisms induced in homology by the
chain maps ϕ and ψ de�ned above coincide with the homomorphisms induced
in homology by the projections p: (ΓF ,ΓG) → (X,A) and q: (ΓF ,ΓG) → (Y,B),
respectively.

Corollary 3.3 If f : (X,A)→ (Y,B) is a selector of F and f |A is a selector of
G, then

f∗ = (F,G)∗ = (ψ)∗ ◦
(
(ϕ)∗

)−1
.

Based on the discussion above, in Section 5 we will assume that we have the
following algorithms which compute the chain maps of the projections p and q,
respectively, and whose details are left to the reader:

Algorithm 3.4 Chain Map of the Projection p
function proj_p (F , G: cubical multivalued map; X, A: cubical set):

chain map;

Algorithm 3.5 Chain Map of the Projection q
function proj_q (F , G: cubical multivalued map; Y , B: cubical set):

chain map;

For the homology computation of the chain maps ϕ and ψ of the projections
(ΓF ,ΓG) → (X,A) and (ΓF ,ΓG) → (Y,B), respectively, one can use the algo-
rithm introduced in [10] or its generalization [24]. Our interface to this algorithm
is as follows:

Algorithm 3.6 Homology of Chain Maps
function homchain (ΓF , ΓG, X, A, Y , B: cubical set; ϕ, ψ: chain map):

(ϕ∗, ψ∗: homomorphism);

At this point we are able to compute f∗:H∗(X,A) → H∗(Y,B). Unfortu-
nately, the method introduced so far is of limited use in practice, since the
amount of algebraic data to process can be extremely large due to the size of
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the chain complex of (ΓF ,ΓG), as illustrated in Section 6. Therefore, it is neces-
sary to replace the pair (ΓF ,ΓG) with a smaller one. For this end, we decrease
in size the domain and codomain of f and we construct a possibly small cubical
submap of F such that the homomorphism induced in homology after the re-
duction is the same as for the original map. E�ective algorithms which we use
for this kind of the reduction are discussed in Section 4.

4 Geometric cubical reduction

In this section we introduce algorithms for the reduction of a pair of cubical sets
(X,A) in such a way that the homology of (X,A) is preserved. The reduction is
done either on the level of full cubical sets or cubical sets. We also introduce an
algorithm for the construction of a possibly small cubical submap of a cubical
multivalued map. For the sake of clarity of presentation, proofs of the results
are postponed to Section 7.

The �rst algorithm in this section removes cubes from X whenever it does
not a�ect the homology of (X,A). Moreover, it does not remove cubes which
belong to S (this feature is used in Algorithms 4.7 and 5.1).

Algorithm 4.1 Reduce Cubes
procedure reduce (var X , A: �nite subset of Knn; S: �nite subset of Knn);
begin

while exists Q ∈ X \ S
such that

(
Q 6∈ A and Q ∩ |X \ {Q}| is acyclic

)
or
(
Q ∈ A and Q ∩ |A \ {Q}| is acyclic

and Q ∩ |X \ {Q}| is acyclic
)

or
(
Q ∈ A and Q ∩ |X \ A| = ∅

)
do

begin
X := X \ {Q};
A := A \ {Q}

end
end.

Figure 1: Reduction with Algorithm 4.1. Cubes in A are dark-grey, cubes in
X \ A are light-gray, S = ∅. Cubes selected for removal are indicated with
arrows and labeled with the corresponding condition from Lemma 7.2

Proposition 4.2 Consider the �nite subsets A ⊂ X ⊂ Knn. Let S ⊂ X . Then
Algorithm 4.1 transforms (X ,A) in a �nite number of steps into the pair (X̃ , Ã)
such that the inclusion (X̃, Ã) ↪→ (X,A) induces an isomorphism in homology.

Moreover, S ⊂ X̃ .
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Let F :X −→→Y be an acyclic combinatorial multivalued map. Assume that
A ⊂ X and F|A is also acyclic. In order to make sure that the restrictions of F
to X \{Q} as well as A\{Q} are acyclic at each step, we propose the following,
enhanced version of Algorithm 4.1.

Algorithm 4.3 Reduce Mutlivalued Map
procedure reduceF (var X , A: �nite subset of Knn;

F :X −→→Y: combinatorial multivalued map);
begin

while exists Q ∈ X
such that

[ (
Q 6∈ A and Q ∩ |X \ {Q}| is acyclic

)
or
(
Q ∈ A and Q ∩ |A \ {Q}| is acyclic

and Q ∩ |X \ {Q}| is acyclic
)

or
(
Q ∈ A and Q ∩ |X \ A| = ∅

) ]
and

[
for each proper face P of Q(

the set
⋃
{|F(R)| | R ∈ X , R 6= Q,P ⊂ R} is acyclic

and if P ⊂ |A| then
⋃
{|F(R)| | R ∈ A, R 6= Q,P ⊂ R}

is also acyclic
) ]

do
begin
X := X \ {Q};
A := A \ {Q}

end
end.

Proposition 4.4 Let X and A be �nite subsets of Knn such that A ⊂ X . Then
Algorithm 4.3 transforms (X ,A) in a �nite number of steps into the pair (X̃ , Ã)
such that the inclusion (X̃, Ã) ↪→ (X,A) induces an isomorphism in homology.
Moreover, if F and F|A are acyclic then so are F|X̃ and F|Ã.

The following algorithm increases the set A within X in such a way that this
does not change the homology of (X,A).

Algorithm 4.5 Expand Relative Set
procedure expandA (X : �nite subset of Knn, var A: �nite subset of Knn);
begin

while exists Q ∈ X \ A such that Q ∩ |A| is acyclic do
A := A ∪ {Q}

end.

Proposition 4.6 Let A ⊂ X ⊂ Knn. Then Algorithm 4.5 transforms (X ,A) in

a �nite number of steps into the pair (X , Ã) such that the inclusion (X,A) ↪→
(X, Ã) induces an isomorphism in homology.

If a combinatorial multivalued map F :X −→→Y is given and F(A) ⊂ B, then
after obtaining the pair (X , Ã) from (X ,A) with Algorithm 4.5, it can turn

out that the inclusion F(Ã) ⊂ B is not valid. Therefore, whenever a cube Q is
added to A, one must also modify the set B so that the inclusion F(A) ⊂ B
is preserved and the homology of (Y,B) remains unchanged. The latter holds
true, for example, if B ∪ F(Q) can be reduced to B with Algorithm 4.1 (note
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that this is not an �if and only if� condition). Moreover, like in Algorithm 4.3,
we must be cautious not to spoil the acyclicity of F|A. With this in mind, we
propose the following modi�cation of Algorithm 4.5:

Algorithm 4.7 Expand Relative Part of Map
procedure expandF (F :X −→→Y: combinatorial multivalued map;

var A: �nite subset of Knn; var B: �nite subset of Kmm);
begin

while exists Q ∈ X \ A such that Q ∩ |A| is acyclic
and reduce (B ∪ F(Q), ∅, B) = B
and for each face P ⊂ |A| of Q the set⋃
{|F(R)| | R ∈ A, R 6= Q,P ⊂ R} is acyclic do

begin
A := A ∪ {Q};
B := B ∪ F(Q)

end
end.

Proposition 4.8 Let A ⊂ X ⊂ Knn and B ⊂ Y ⊂ Kmm. Let F :X −→→Y be a
combinatorial multivalued map such that F(A) ⊂ B. Let G := F|A. Then Algo-

rithm 4.7 modi�es (A,B) in a �nite number of steps into (Ã, B̃) such that the

inclusions i: (X,A) ↪→ (X, Ã) and j: (Y,B) ↪→ (Y, B̃) induce isomorphisms in

homology. Moreover, F(Ã) ⊂ B̃, and if F|A is acyclic, then so is F|Ã.

Algorithms 4.1, 4.3, 4.5 and 4.7 provide a variety of methods for reducing
the number of highest dimensional cubes that need to be considered in the
computation of homology. Thus, before turning to algorithms which reduce the
dimension we include some technical remarks concerning possible modi�cations
and their e�ect on runtime.

Figure 2: Two di�erent results of reduction

In Algorithm 4.1 it is worth to make an additional e�ort to choose for re-
duction those elements of Knn which have the smallest number of neighbors in
X . Figure 2 shows two possible results of reduction of a pair of cubical sets in
R2. The upper result was obtained with the use of this improvement, the lower
one is an example of what one can obtain without it. Note that the gain is not
only in the smaller number of cubes to process, but also the chain complexes
and the generators of homology obtained in this way are smaller.
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Figure 3: A homology generator obtained without and with Algorithm 4.5

Algorithm 4.5 usually reduces the computations signi�cantly, but it causes
the loss of the information about the actual generators of homology, as illus-
trated in Figure 3.

Note that if (X , ∅) can be reduced with Algorithm 4.1 to a set containing
exactly one grid element, then X is acyclic. However, the converse is not true.
There exist acyclic sets X ⊂ Knn such that cardX > 1, but no element of X can
be removed without causing the change in the homology of |X | (consult [27] for
examples).

Algorithms 4.3 and 4.7 can perform more e�ciently if one cancels the veri-
�cation whether the acyclicity of F is preserved, and verify this condition only
on the �nal sets of cubes X̃ and Ã (in dimension 3 our experiments suggest that
the computations run about 3 times faster). However, in some cases acyclicity
may be lost (an example is available at [27]). On the other hand, if F has convex
values then we know a priori that every restriction of F is acyclic.

If X ⊂ Rk is a cubical set, then an elementary cube Q is called a free face
in X if there exists exactly one elementary cube P ⊂ X such that Q ⊂ P and
dimP − dimQ = 1.

The following algorithm removes pairs of elementary cubes from a cubical
set with the use of so-called free face collapses (see [11]).

Algorithm 4.9 Collapse Free Faces
procedure collapse (var X: cubical set in Rn; A, K: cubical set in Rn);
begin

for k := n− 1 downto 0 do
while exists a k-dimensional free face Q in X

such that Q 6⊂ A ∪K do
begin

let P ⊂ X be the (k + 1)-dimensional elementary cube
such that Q ⊂ P ;

X := X \ (
◦
Q ∪

◦
P )

end
end.

At this point we would like to make a remark that Algorithm 4.9 works on
more general data than Algorithm 4.1 and in our computations it is supposed
to be the continuation of the latter, as shown in Figure 5. However, one should
expect to obtain a similar result of reduction even if one does not run Algorithm
4.1 prior to Algorithm 4.9, but such computations use more resources, as one
can see in Table 3 (Example 1 and 5).
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Figure 4: Reduction with Algorithm 4.9. Free faces are indicated with arrows

Figure 5: Two stages of reduction of cubical sets�with Algorithm 4.1 and Al-
gorithm 4.9.

Proposition 4.10 Let A ⊂ X ⊂ Rn and K ⊂ X be cubical sets. Then Algo-
rithm 4.9 transforms X in a �nite number of steps into X̃ such that K ⊂ X̃ ⊂ X
and the inclusion (X̃, A) ↪→ (X,A) induces an isomorphism in homology.

Like in the case of Algorithm 4.1, if (X, ∅) can be reduced with Algorithm
4.9 to a single point, then X is acyclic, but the converse is not true (see [27] for
an example).

In addition to the reduction by Algorithm 4.9, a considerable amount of data
can often be removed in a very simple manner, as shown in the following result
which follows directly from the excision property.

Proposition 4.11 Let A ⊂ X ⊂ Rn be cubical sets. Take X̃ := cl (X \A) and

Ã := X̃ ∩ A. Then the inclusion (X̃, Ã) ↪→ (X,A) induces an isomorphism in
homology.

Since computing the intersection and the closure of di�erence of cubical
sets is obvious from the algorithmic point of view, we do not write an explicit
algorithm for computing (X̃, Ã) as de�ned above. In Algorithm 5.1 we refer
directly to Proposition 4.11 instead.

The last algorithm introduced in this section constructs a possibly small
upper semi-continuous cubical submap F̃ of a given cubical multivalued map
F |

X̃
for the purpose of homology computation.

Algorithm 4.12 Reduce Map
function reducemap (F :X −→→Y: combinatorial multivalued map;

A: �nite subset of Knn, X̃, Ã: cubical set): cubical multivalued map;
begin

F̃ := ∅;
for k := n downto 0 do

for each elementary cube Q ⊂ X̃ of dimension k do
begin

D := dFe(
◦
Q);
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K :=
⋃
{F̃ (

◦
P ) | P is an elementary cube, Q ⊂ P ⊂ X̃,

and dimP − dimQ = 1};
if Q ⊂ Ã then

K := K ∪ dF|Ae(
◦
Q);

collapse (D, ∅, K);

F̃ (
◦
Q) := D; [see explanation in Section 3]

end;
return F̃

end.

Proposition 4.13 Let A ⊂ X ⊂ Knn and B ⊂ Y ⊂ Kmm. Let F :X −→→Y be a

combinatorial multivalued map. Assume that F(A) ⊂ B. Let G := F|A. Let Ã ⊂
X̃ ⊂ Rn be cubical sets such that Ã ⊂ A and X̃ ⊂ X. Let i: (X̃, Ã) ↪→ (X,A)
denote the inclusion map. Then Algorithm 4.12 applied to F , A, X̃, Ã returns
F̃ in a �nite number of steps, such that F̃ is an upper semi-continuous cubical
multivalued map which is a submap of F , G̃ := G|

Ã
is a submap of F |

Ã
and if

F is acyclic then so is F̃ .

Figure 6: The graph of F and the graph of F̃ ; note that F (x) (indicated with a
dashed line) is not contained in B, although x ∈ A

We would like to point out that Algorithm 4.12 is crucial for the e�ectiveness
of our approach. This is due to the fact that if X,Y ⊂ Rn, then the graph of F
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is a subset of R2n. However, Algorithm 4.12 can usually replace this graph with
a subset that is essentially n-dimensional, as illustrated in Figure 6. Note that if
complicated acyclic cubical sets which cannot be reduced by means of free face
collapses appear in Algorithm 4.12, then the dimension of the created graph
is higher. This impacts the e�ectiveness of the algorithm since the associated
algebraic computations become more complicated. Observe that the graph of G
does not need to be reduced at all, because for relative homology computation
all the generators of the cubical chain complex of ΓG are neglected.

5 Homology computation of maps

In this section we gather the algorithms introduced in the previous sections in
order to compute the homology of a continuous map, given its representation.
We also repeat the statement of Theorem 1.1 and we prove it.

Before we proceed, we would like to explain the meaning of the parameter
�incl� appearing in Algorithm 5.1: If it is set to true, then the algorithm assumes
(X,A) ⊂ (Y,B), and takes into consideration the inclusion i: (X,A) ↪→ (Y,B)
to �nd the endomorphism (i∗)−1 ◦ f∗:H∗(X,A) → H∗(X,A). Otherwise the
homomorphism f∗:H∗(X,A) → H∗(Y,B) is computed and its matrix is given
with respect to some generators of H∗(X,A) and H∗(Y,B) which are unrelated
to each other even if (X,A) ⊂ (Y,B).

Algorithm 5.1 Computation of Homology Map
function homology (F :X −→→Y: combinatorial multivalued map;

A: �nite subset of Knn, B: �nite subset of Kmm, bool incl):
homomorphism;

begin
expandF (F , A, B); [Algorithm 4.7]
reduceF (X , A, F); [Algorithm 4.3]
S := F(X );
if incl then S := S ∪ X ;
reduce (Y, B, S); [Algorithm 4.1]
expandA (Y, B); [Algorithm 4.5]

X̃ := |X |; Ã := |A|;
collapse (X̃, Ã, ∅); [Algorithm 4.9]

X̃ := cl (X̃ \ Ã); Ã := Ã ∩ X̃; [Proposition 4.11]

F̃ := reducemap (F , A, X̃ , Ã); [Algorithm 4.12]
G := F|A;
G̃ := G|

Ã
;

K := q(Γ
F̃

);
if incl then K := K ∪ X̃;
Ỹ := |Y|; B̃ := |B|;
collapse (Ỹ , B̃, K); [Algorithm 4.9]
if incl then

ϕ := proj_p (F̃ , G̃, Ỹ , B̃); [Algorithm 3.4]
else ϕ := 0;
ψ := proj_q (F̃ , G̃, Ỹ , B̃); [Algorithm 3.5]

(ϕ̄, ψ̄) := homchain (Γ
F̃
, Γ

G̃
, Ỹ , B̃, Ỹ , B̃, ϕ, ψ); [Algorithm 3.6]
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if incl then return ψ̄ ◦ (ϕ̄)−1

else return ψ̄
end.

Theorem 5.2 (Theorem 1.1) Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be full cu-
bical sets. Let the combinatorial multivalued map F :X −→→Y be a representation
of

f : (X,A)→ (Y,B).

Assume that F(A) ⊂ B and that both F and F|A are acyclic. Then the ho-
momorphism returned by Algorithm 5.1 invoked with F , A, B and �incl� set to
false coincides with f∗:H∗(X,A)→ H∗(Y,B) in the sense that the domain D of
this homomorphism is isomorphic to H∗(X,A), the codomain C of it is isomor-
phic to H∗(Y,B), and the following diagram, in which ϕ denotes the returned
homomorphism, commutes

D
ϕ−→ Cy' y'

H∗(X,A)
f∗−→ H∗(Y,B)

Moreover, if X ⊂ Y, A ⊂ B and the inclusion i: (X,A) ↪→ (Y,B) induces an
isomorphism in homology, then the homomorphism returned by Algorithm 5.1
invoked with F , A, B and �incl� set to true coincides with the endomorphism
(i∗)−1 ◦ f∗:H∗(X,A)→ H∗(X,A).

Proof: At the beginning of Algorithm 5.1, Algorithm 4.7 transforms A, B to
A1, B1 such that by Proposition 4.8 the inclusions i1: (X,A) ↪→ (X,A1) and
j1: (Y,B) ↪→ (Y,B1) induce isomorphisms in homology. Moreover, the map G1 :=
F|A1 is acyclic.

Next, Algorithm 4.3 transforms (X ,A1) to (X2,A2) such that by Proposition
4.4 the inclusion i2: (X2, A2) ↪→ (X,A1) induces an isomorphism in homology
and the maps F2 := F|X2 and G2 := F|A2 are acyclic.

Afterwards, Algorithm 4.1 transforms (Y,B1) to (Y2,B2) such that the in-
clusion j2: (Y2, B2) ↪→ (Y,B1) induces an isomorphism in homology. Note that
F2(X2) ⊂ Y2 and F2(A2) ⊂ B2, which implies that F2(X2) ⊂ Y2 and G2(A2) ⊂
B2. Moreover, if �incl� is set to true, then also X2 ⊂ Y2 and A2 ⊂ B2, and
therefore X2 ⊂ Y2 and A2 ⊂ B2.

In the next step, Algorithm 4.5 transforms B2 to B3 such that the inclusion
j3: (Y2, B2) ↪→ (Y2, B3) induces an isomorphism in homology.

Then Algorithm 4.9 and the two assignments that follow it transform (X2, A2)
to (X̃, Ã) such that the inclusion i3: (X̃, Ã) ↪→ (X2, A2) induces an isomorphism

in homology by Propositions 4.10 and 4.11. Note that the maps F̃2 := F2|X̃ and

G̃ := G2|Ã are acyclic as restrictions of acyclic cubical multivalued maps F2 and
G2, respectively.

Next, Algorithm 4.12 constructs the submap F̃ : X̃ −→→Y2 of F̃2 and the two
assignments that follow it construct G̃ as above. Proposition 4.13 implies that
F̃ is acyclic. Moreover, Proposition 2.5 implies that (F̃ , G̃)∗ = (F̃2, G̃)∗.

In the next step, Algorithm 4.9 transforms (Y2, B3) to (Ỹ , B̃) such that

the inclusion j4: (Ỹ , B̃) ↪→ (Y2, B3) induces an isomorphism in homology. Since
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F̃ (X̃) ⊂ Ỹ , the multivalued maps F̃ : X̃ −→→ Ỹ and G̃: Ã−→→ B̃ are well-de�ned.

Moreover, if �incl� is set to true, then X̃ ⊂ Ỹ .
Consider the following diagram which gathers most of the sets and maps

discussed so far:

(X,A)
i1
↪→ (X,A1)

i2←↩ (X2, A2)
i3←↩ (X̃, Ã)yy(F,G)

yy(F,G1)

yy(F2,G2)

yy(F̃2,G̃)↘↘ (F̃ ,G̃)

(Y,B)
j1
↪→ (Y,B1)

j2←↩ (Y2, B2)
j3
↪→ (Y2, B3)

j4←↩ (Ỹ , B̃)

This is not a commutative diagram, but it becomes one after applying the ho-
mology functor. Then the horizontal arrows correspond to isomorphisms. There-
fore, f∗ = (F,G)∗ ≈ (F̃ , G̃)∗. In addition to this, if �incl� is set to true, then

the inclusion map ĩ : (X̃, Ã) ↪→ (Ỹ , B̃) is well-de�ned and i∗ ≈ ĩ∗.
In the remaining computations programmed in Algorithm 5.1, either the

homomorphism q̃∗:H∗(ΓF̃ ,ΓG̃) → H∗(Ỹ , B̃) induced in homology by the nat-

ural projection q, or the homomorphism q̃∗ ◦ (̃i∗)−1:H∗(Ỹ , B̃) → H∗(Ỹ , B̃) is
computed, which corresponds either to f∗ or (i∗)−1 ◦ f∗, respectively.

6 Examples

In this section several examples of the applications of the algorithms introduced
in this paper are discussed and the issue of computational complexity is brie�y
adressed. Some possible improvements of the algorithms are also indicated.

A software implementation of the algorithms introduced in this paper is
available to the public at the website [27]. In particular, a computer program for
the computation of the homomorphism induced in homology by a combinatorial
multivalued map F : (X ,A)−→→ (Y,B) is available there, as well as a program
which veri�es whether a given map F satis�es the assumptions of Theorem 3.1.

To the best of our knowledge the �rst and only other dimension independent
algorithm for computing homology of maps is due to M. Allili and T. Kaczynski
[1]. Therefore, a comparison is appropriate. To begin with, the algorithm of [1]
requires that the upper representation F of the combinatorial multivalued map
has convex as opposed to acyclic values for each point in the domain. Moreover,
the issue of relative homology is not addressed there. In addition to that, no
geometric reduction is performed, which usually results in much larger algebraic
data that needs to be processed. Last but not least, the algorithm in [1] produces
only a chain map ϕ and one needs to continue the computations further in
order to �nd the homomorphism induced by this chain map in homology. These
algebraic computations are included in our algorithm. An actual comparison
of e�ectiveness of the computer program [27] based on our algorithm with the
implementation of [1] introduced in [13] proves the superiority of our approach
(consult a discussion in [27] for details).

In order to illustrate the e�ectiveness of the algorithm introduced in this
paper, we would like to mention a few example maps which we computed for
benchmarking and testing purposes (see Table 1). The �rst combinatorial map
is a representation of a Conley index map for an unstable periodic trajectory
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[29], the second arises from a Conley index map for a �nite-dimensional ap-
proximation of the Kot-Sha�er map [5], and the remaining three are rigorous
enclosures of various index maps for an attracting periodic trajectory in the
Rössler equations [25].

All the running times are measured accurately and refer to a PC with a 1 GHz
processor running Linux. The memory measurements are only approximate. In
Table 1 we indicate the size of the data in terms of the dimension of the space and
the number of cubes in the domain of the map. The topological complexity of
the examples is indicated by the homology module (over the ring of integers) of
the map's domain. In all the cases the homomorphism induced in homology was
computed together with the homomorphism induced by the inclusion. Note that
the program easily handles relatively large sets of cubes, but the computation
time and memory requirements increase signi�cantly with the dimension.

The latter observation is clearly illustrated in Table 2, which contains a
benchmark comparison of the computation of the homomorphism induced in
homology by an example combinatorial multivalued map arising from the Conley
index map for an attracting periodic trajectory. The domain of the map taken
for the tests contains 814 two-dimensional squares and was embedded in higher-
dimensional spaces in order to determine how the space dimension increases
the need for the computational resources. We also remark that the algebraic
stage of the homology computation usually requires far more memory than the
geometric reduction; therefore, the e�ort put into the latter pays o� in the �nal
stage of computations.

Ex. space no. of cubes in H∗(X,A) computation memory
no. dimension X \A and A over Z time used

1 3 2,136 and 1,016 (0,Z,Z) 0.33 min 9 MB
2 6 3,647 and 6,683 (0,Z,Z18) 192 min (3.2 h) 100 MB
3 3 122,178 and 0 (Z,Z,Z) 2.1 min 28 MB
4 3 840,303 and 0 (Z,Z4,Z44) 245 min (4.1 h) 204 MB
5 3 1,372,328 and 0 (Z,Z8,Z24) 770 min (12.8 h) 616 MB

Table 1: Some example computation benchmarks

space dimension computation time memory used

2 0.005 min < 2 MB
3 0.019 min < 2 MB
4 0.074 min 5 MB
5 0.32 min 12 MB
6 1.9 min 32 MB
7 8.3 min 80 MB
8 72 min 211 MB

Table 2: A comparison of time and memory complexity for various space dimen-
sions

For yet another benchmark we computed an endomorphism induced in ho-
mology by a simple combinatorial multivalued map on a 3-dimensional pair of
cubical sets arising from a Conley index map for a repelling periodic trajectory
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in the plane and embedded in R3 as in the previous example. We compared
how the speed and memory usage change if we skip some of the algorithms. In
Table 3 each column corresponds to one example computation. In each row, a
`+' indicates which reductions were used, and a `−' shows which were disabled.
The last two rows show the computation time and approximate memory usage.
Notice that the lack of some reductions is compensated to a certain extent by
other reductions. As one should expect, without any geometric reduction the
program is very ine�cient: it needs 3.7 hours and over 500 MB RAM to per-
form the computations that can normally be done in 22 seconds within less than
10 MB RAM.

Example no. 1 2 3 4 5 6 7
reduce (Alg. 4.1) + + + + + − −
reduceF (Alg. 4.3) + + + + + − −
expandA (Alg. 4.5) + + − + + − −
expandF (Alg. 4.7) + + − − + − −
reducemap (Alg. 4.12) + + + + − + −
collapse (Alg. 4.9) + − + + + + −
computation time (min) 0.36 0.64 1.8 0.94 0.95 2.1 224(!)
memory used (MB) 9.18 20.6 35.8 27.3 99.1 36.7 540(!)

Table 3: Computation times and memory usage with some geometric reductions
turned o�

All the combinatorial multivalued maps used for benchmarks mentioned in
this section were obtained with the software available at [2] as cubical enclosures
of translation maps in various ODEs, except for the 6-dimensional example listed
in Table 1, which was provided to us by S. Day and O. Junge (see [27] for details).

Although we don't prove it in this paper, the worst-case complexity of all
the algorithms for the geometric reduction introduced in the paper is linear in
the number of [elementary] cubes, provided the space dimension is �xed. Unfor-
tunately, this might not be the case with the algebraic homology computations
used in the software (see [24]). However, due to the simplicity of that algo-
rithm, as well as the speci�c data that arises from the geometric complexes, the
algorithm [24] proves to be e�cient in practice.

Figure 7: Three maps F which di�er only on A but induce di�erent homomor-
phisms in homology

Notice that in order to compute the homomorphism induced by a suitable
combinatorial multivalued map F : (X ,A)−→→ (Y,B) one needs to know the map
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F on X \ A and on only these cubes in A which have at least one neighbor in
X \ A. This is a valuable observation, but one can go even one step further.
The idea of relative homology of (X,A) is that the subset A of X is, from the
topological point of view, collapsed to a single point which is mapped to what
B is collapsed to. Therefore, the homomorphism induced in relative homology
by the map on (X,A) does not require the knowledge of the map on A at all.
However, this observation does not carry over to the cubical setting. The three
maps illustrated in Figure 7 prove that the knowledge of F only on X \A may
not be su�cient to determine the homomorphism induced in homology by F . In
these examples, X = Y = [1, 4], A = B = [1, 2] ∪ [3, 4], ΓG is indicated in dark

grey, ΓF \ΓG is indicated in bright grey, and Γ
F̃
\ΓG for some F̃ is sketched in

black. The homomorphism induced in homology is either the identity, or minus
identity, or zero.

7 Proofs for Section 4

In this section we prove all the results introduced in Section 4. Since in most
cases the fact that a speci�c algorithm stops after a �nite number of steps is
fairly obvious, we skip this issue and focus on more important features. We
begin with the following lemma which was proved implicitly in [25] but for the
sake of completeness we provide a proof.

Lemma 7.1 Let Q ∈ D ⊂ Knn. If Q ∩ |D \ {Q}| is acyclic, then the inclusion
|D \ {Q}| ↪→ |D| induces an isomorphism in homology.

Proof: To simplify the notation, set D′ := |D \ {Q}| and D := |D| = Q ∪ D′.
Consider the following portion of the Mayer-Vietoris sequence for Q and D′:

Hk(Q ∩D′) ik−→ Hk(Q)⊕Hk(D′)
jk−→ Hk(D) ∂k−→ Hk−1(Q ∩D′).

Since Q and Q ∩D′ are acyclic, for k > 1 the �rst and the last entries in this
sequence are trivial. By the exactness of the sequence, the homomorphism in
the middle, which is the homomorphism induced by the inclusion of interest
(because Hk(Q) ∼= 0), is an isomorphism for each k > 1.

Now consider the following part of the Mayer-Vietoris sequence:

H1(Q ∩D′)︸ ︷︷ ︸
0

i1−→ H1(Q)︸ ︷︷ ︸
0

⊕H1(D′)
j1−→ H1(D) ∂1−→

∂1−→ H0(Q ∩D′)︸ ︷︷ ︸
∼=Z

i0−→ H0(Q)︸ ︷︷ ︸
∼=Z

⊕H0(D′)
j0−→ H0(D) ∂0−→ 0

Since i0 acts as z 7→ (z,−z), one can see from the form of the domain and
codomain of i0 that i0 is a monomorphism. Therfore, ∂1 ≡ 0 and j1 is an
epimorphism. Since i1 is the zero map, j1 is in fact an isomorphism, and this is
the isomorphism induced by the inclusion we are interested in, because H1(Q) ∼=
0.

The fact that ∂0 ≡ 0 implies that j0 is an epimorphism. Since j0 acts as
(x, y) 7→ x + y, one can use the information on i0 to see that j0 restricted to
H0(D′) is an isomorphism.
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Lemma 7.2 Let A ⊂ X ⊂ Knn. If Q ∈ X satis�es at least one of the following
conditions:

(i) Q 6∈ A and Q ∩ |X \ {Q}| is acyclic,

(ii) Q ∈ A and both Q ∩ |A \ {Q}| and Q ∩ |X \ {Q}| are acyclic,

(iii) Q ∈ A and Q ∩ |X \ A| = ∅,

then the inclusion (|X \ {Q}| , |A \ {Q}|) ↪→ (|X | , |A|) induces an isomorphism
in homology.

Proof: To simplify the notation, de�ne X ′ := |X \ {Q}| and A′ := |A \ {Q}|.
For (i) and (ii) consider the following commutative diagram

Hk(A′) −→ Hk(X ′) −→ Hk(X ′, A′) −→ Hk−1(A′) −→ Hk−1(X ′)y∼= y∼= y y∼= y∼=
Hk(A) −→ Hk(X) −→ Hk(X,A) −→ Hk−1(A) −→ Hk−1(X)

where the rows are fragments of the exact sequences for the pairs (X ′, A′) and
(X,A), respectively, and the maps indicated by the vertical arrows are the ho-
momorphisms induced by the corresponding inclusion maps. Note that in both
cases (i) and (ii) the inclusions A′ ↪→ A andX ′ ↪→ X induce isomorphisms in ho-
mology by Lemma 7.1 (however, in the case (i) the inclusion A′ ↪→ A is just the
identity map). The �ve lemma implies that also the inclusion (X ′, A′) ↪→ (X,A)
induces an isomorphism in homology.

For the case (iii) notice that since X \ X ′ = A \ A′, the inclusion map
(X ′, A′) ↪→ (X,A) is an excision map and therefore it induces an isomorphism
in homology.

Proof of Proposition 4.2: The isomorphism part follows directly from Lemma
7.2. The inclusion S ⊂ X̃ follows from the fact that in Algorithm 4.1 only cubes
from X \ S are analyzed and therefore no cube which belongs to S is removed
from X .

Proof of Proposition 4.4: We only need to prove that if F and F|A are acyclic
then so are F|X̃ and F|Ã, because the rest follows directly from Proposition 4.2.
Note that in each step of the algorithm, dF|X e||X\{Q}| di�ers from dF|X\{Q}e
only on the proper faces of Q, and the acyclicity of these images is veri�ed in
the condition for the removal of Q.

Lemma 7.3 Let A ⊂ X ⊂ Knn. Let Q ∈ X . If Q ∩ |A| is acyclic, then the
inclusion (|X | , |A|) ↪→ (|X | , |A ∪ {Q}|) induces an isomorphism in homology.

Proof: If Q ∈ A, then this is trivial. Otherwise, we use Lemma 7.1 and the �ve
lemma in the following way.

To simplify the notation, let Ā := |A ∪ {Q}|. Consider the following com-
mutative diagram:

Hk(A) −→ Hk(X) −→ Hk(X,A) −→ Hk−1(A) −→ Hk−1(X)y∼= y∼= y y∼= y∼=
Hk(Ā) −→ Hk(X) −→ Hk(X, Ā) −→ Hk−1(Ā) −→ Hk−1(X)
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where the rows are fragments of the exact sequences for the pairs (X,A) and
(X, Ā), respectively, and the maps indicated by the vertical arrows are the ho-
momorphisms induced by the corresponding inclusion maps. By Lemma 7.1, the
inclusion A ↪→ Ā induces an isomorphism in homology (we apply this lemma to
the inclusion |(A ∪ {Q}) \ {Q}| ↪→ A∪{Q}). The inclusion X ↪→ X induces the
identity isomorphism. By the �ve lemma, also the inclusion (X,A) ↪→ (X, Ā)
induces an isomorphism in homology.

Proof of Proposition 4.6: This follows directly from Lemma 7.3.

Proof of Proposition 4.8: The fact that the inclusion i induces an isomorphism
in homology follows directly from Lemma 7.2, case (i). For the inclusion j, note
that the condition �reduce (B ∪ F(Q), ∅, B) = B� implies that the inclusion
|B| ↪→ |B ∪ F(Q)| induces an isomorphism in homology, and so does the inclu-
sion (Y, |B|) ↪→ (Y, |B ∪ F(Q)|) (see the proof of Lemma 7.3 for details).

The inclusion F(Ã) ⊂ B̃ follows from the fact that whenever Q is added to
A, its image is added to B.

The acyclicity of F on Ã follows from the same argument as used in the
proof of Proposition 4.4.

Lemma 7.4 Let A ⊂ X ⊂ Rn be cubical sets. Let Q ⊂ X, Q 6⊂ A, be a free face
in X. Let P ⊂ X be the elementary cube such that Q ⊂ P and dimP −dimQ =

1. Then the inclusion (X \ (
◦
Q ∪

◦
P ), A) ↪→ (X,A) induces an isomorphism in

homology.

Proof: In [11] such a modi�cation of (X,A) is called a free face collapse. A minor
modi�cation of the proof therein shows that the inclusion in question induces
an isomorphism in homology.

Proof of Proposition 4.10: The isomorphism part follows directly from Lemma
7.4. The inclusion K ⊂ X̃ follows from the fact that whenever Q ⊂ K, the

neither
◦
Q nor

◦
P is removed from X (note that if P ⊂ K, then also Q ⊂ K).

Proof of Proposition 4.13: The fact that F̃ is an upper semicontinuous cubical
multivalued map follows directly from the way F̃ is constructed. Since for ev-
ery x ∈ X̃ its image F̃ (x) is constructed from F (x) with Algorithm 4.9, the

inclusion F̃ (x) ⊂ F (x) is obvious. Moreover, G̃ := G|
Ã
is a submap of F̃ , be-

cause whenever
◦
Q ⊂ Ã, its image by G is added to K so that F̃ (

◦
Q) contains it.

The acyclicity of F̃ and G̃ follows from Proposition 4.10, because each F̃ (
◦
Q) is

obtained from an acyclic set F (
◦
Q) with Algorithm 4.9.
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